53,852 research outputs found

    Pervasive intelligent routing in content centric delay tolerant networks

    Get PDF
    This paper introduces a Swarm-Intelligence based Routing protocol (SIR) that aims to efficiently route information in content centric Delay Tolerant Networks (CCDTN) also dubbed pocket switched networks. First, this paper formalizes the notion of optimal path in CCDTN and introduces an original and efficient algorithm to process these paths in dynamic graphs. The properties and some invariant features of these optimal paths are analyzed and derived from several real traces. Then, this paper shows how optimal path in CCDTN can be found and used from a fully distributed swarm-intelligence based approach of which the global intelligent behavior (i.e. shortest path discovery and use) emerges from simple peer to peer interactions applied during opportunistic contacts. This leads to the definition of the SIR routing protocol of which the consistency, efficiency and performances are demonstrated from intensive representative simulations

    The Lifecycle and Cascade of WeChat Social Messaging Groups

    Full text link
    Social instant messaging services are emerging as a transformative form with which people connect, communicate with friends in their daily life - they catalyze the formation of social groups, and they bring people stronger sense of community and connection. However, research community still knows little about the formation and evolution of groups in the context of social messaging - their lifecycles, the change in their underlying structures over time, and the diffusion processes by which they develop new members. In this paper, we analyze the daily usage logs from WeChat group messaging platform - the largest standalone messaging communication service in China - with the goal of understanding the processes by which social messaging groups come together, grow new members, and evolve over time. Specifically, we discover a strong dichotomy among groups in terms of their lifecycle, and develop a separability model by taking into account a broad range of group-level features, showing that long-term and short-term groups are inherently distinct. We also found that the lifecycle of messaging groups is largely dependent on their social roles and functions in users' daily social experiences and specific purposes. Given the strong separability between the long-term and short-term groups, we further address the problem concerning the early prediction of successful communities. In addition to modeling the growth and evolution from group-level perspective, we investigate the individual-level attributes of group members and study the diffusion process by which groups gain new members. By considering members' historical engagement behavior as well as the local social network structure that they embedded in, we develop a membership cascade model and demonstrate the effectiveness by achieving AUC of 95.31% in predicting inviter, and an AUC of 98.66% in predicting invitee.Comment: 10 pages, 8 figures, to appear in proceedings of the 25th International World Wide Web Conference (WWW 2016

    The Impact of Social Curiosity on Information Spreading on Networks

    Full text link
    Most information spreading models consider that all individuals are identical psychologically. They ignore, for instance, the curiosity level of people, which may indicate that they can be influenced to seek for information given their interest. For example, the game Pok\'emon GO spread rapidly because of the aroused curiosity among users. This paper proposes an information propagation model considering the curiosity level of each individual, which is a dynamical parameter that evolves over time. We evaluate the efficiency of our model in contrast to traditional information propagation models, like SIR or IC, and perform analysis on different types of artificial and real-world networks, like Google+, Facebook, and the United States roads map. We present a mean-field approach that reproduces with a good accuracy the evolution of macroscopic quantities, such as the density of stiflers, for the system's behavior with the curiosity. We also obtain an analytical solution of the mean-field equations that allows to predicts a transition from a phase where the information remains confined to a small number of users to a phase where it spreads over a large fraction of the population. The results indicate that the curiosity increases the information spreading in all networks as compared with the spreading without curiosity, and that this increase is larger in spatial networks than in social networks. When the curiosity is taken into account, the maximum number of informed individuals is reached close to the transition point. Since curious people are more open to a new product, concepts, and ideas, this is an important factor to be considered in propagation modeling. Our results contribute to the understanding of the interplay between diffusion process and dynamical heterogeneous transmission in social networks.Comment: 8 pages, 5 figure
    corecore