390 research outputs found

    PVW: Designing Virtual World Server Infrastructure

    Get PDF
    This paper presents a high level overview of PVW (Partitioned Virtual Worlds), a distributed system architecture for the management of virtual worlds. PVW is designed to support arbitrarily large and complex virtual worlds while accommodating dynamic and highly variable user population and content distribution density. The PVW approach enables the task of simulating and managing the virtual world to be distributed over many servers by spatially partitioning the environment into a hierarchical structure. This structure is useful both for balancing the simulation load across many nodes, as well as features such as geometric simplification and distribution of dynamic content

    ALVIC versus the Internet: Redesigning a Networked Virtual Environment Architecture

    Get PDF
    The explosive growth of the number of applications based on networked virtual environment technology, both games and virtual communities, shows that these types of applications have become commonplace in a short period of time. However, from a research point of view, the inherent weaknesses in their architectures are quickly exposed. The Architecture for Large-Scale Virtual Interactive Communities (ALVICs) was originally developed to serve as a generic framework to deploy networked virtual environment applications on the Internet. While it has been shown to effectively scale to the numbers originally put forward, our findings have shown that, on a real-life network, such as the Internet, several drawbacks will not be overcome in the near future. It is, therefore, that we have recently started with the development of ALVIC-NG, which, while incorporating the findings from our previous research, makes several improvements on the original version, making it suitable for deployment on the Internet as it exists today

    Systems-compatible Incentives

    Get PDF
    Originally, the Internet was a technological playground, a collaborative endeavor among researchers who shared the common goal of achieving communication. Self-interest used not to be a concern, but the motivations of the Internet's participants have broadened. Today, the Internet consists of millions of commercial entities and nearly 2 billion users, who often have conflicting goals. For example, while Facebook gives users the illusion of access control, users do not have the ability to control how the personal data they upload is shared or sold by Facebook. Even in BitTorrent, where all users seemingly have the same motivation of downloading a file as quickly as possible, users can subvert the protocol to download more quickly without giving their fair share. These examples demonstrate that protocols that are merely technologically proficient are not enough. Successful networked systems must account for potentially competing interests. In this dissertation, I demonstrate how to build systems that give users incentives to follow the systems' protocols. To achieve incentive-compatible systems, I apply mechanisms from game theory and auction theory to protocol design. This approach has been considered in prior literature, but unfortunately has resulted in few real, deployed systems with incentives to cooperate. I identify the primary challenge in applying mechanism design and game theory to large-scale systems: the goals and assumptions of economic mechanisms often do not match those of networked systems. For example, while auction theory may assume a centralized clearing house, there is no analog in a decentralized system seeking to avoid single points of failure or centralized policies. Similarly, game theory often assumes that each player is able to observe everyone else's actions, or at the very least know how many other players there are, but maintaining perfect system-wide information is impossible in most systems. In other words, not all incentive mechanisms are systems-compatible. The main contribution of this dissertation is the design, implementation, and evaluation of various systems-compatible incentive mechanisms and their application to a wide range of deployable systems. These systems include BitTorrent, which is used to distribute a large file to a large number of downloaders, PeerWise, which leverages user cooperation to achieve lower latencies in Internet routing, and Hoodnets, a new system I present that allows users to share their cellular data access to obtain greater bandwidth on their mobile devices. Each of these systems represents a different point in the design space of systems-compatible incentives. Taken together, along with their implementations and evaluations, these systems demonstrate that systems-compatibility is crucial in achieving practical incentives in real systems. I present design principles outlining how to achieve systems-compatible incentives, which may serve an even broader range of systems than considered herein. I conclude this dissertation with what I consider to be the most important open problems in aligning the competing interests of the Internet's participants

    Achieving network resiliency using sound theoretical and practical methods

    Get PDF
    Computer networks have revolutionized the life of every citizen in our modern intercon- nected society. The impact of networked systems spans every aspect of our lives, from financial transactions to healthcare and critical services, making these systems an attractive target for malicious entities that aim to make financial or political profit. Specifically, the past decade has witnessed an astounding increase in the number and complexity of sophisti- cated and targeted attacks, known as advanced persistent threats (APT). Those attacks led to a paradigm shift in the security and reliability communities’ perspective on system design; researchers and government agencies accepted the inevitability of incidents and malicious attacks, and marshaled their efforts into the design of resilient systems. Rather than focusing solely on preventing failures and attacks, resilient systems are able to maintain an acceptable level of operation in the presence of such incidents, and then recover gracefully into normal operation. Alongside prevention, resilient system design focuses on incident detection as well as timely response. Unfortunately, the resiliency efforts of research and industry experts have been hindered by an apparent schism between theory and practice, which allows attackers to maintain the upper hand advantage. This lack of compatibility between the theory and practice of system design is attributed to the following challenges. First, theoreticians often make impractical and unjustifiable assumptions that allow for mathematical tractability while sacrificing accuracy. Second, the security and reliability communities often lack clear definitions of success criteria when comparing different system models and designs. Third, system designers often make implicit or unstated assumptions to favor practicality and ease of design. Finally, resilient systems are tested in private and isolated environments where validation and reproducibility of the results are not publicly accessible. In this thesis, we set about showing that the proper synergy between theoretical anal- ysis and practical design can enhance the resiliency of networked systems. We illustrate the benefits of this synergy by presenting resiliency approaches that target the inter- and intra-networking levels. At the inter-networking level, we present CPuzzle as a means to protect the transport control protocol (TCP) connection establishment channel from state- exhaustion distributed denial of service attacks (DDoS). CPuzzle leverages client puzzles to limit the rate at which misbehaving users can establish TCP connections. We modeled the problem of determining the puzzle difficulty as a Stackleberg game and solve for the equilibrium strategy that balances the users’ utilizes against CPuzzle’s resilience capabilities. Furthermore, to handle volumetric DDoS attacks, we extend CPuzzle and implement Midgard, a cooperative approach that involves end-users in the process of tolerating and neutralizing DDoS attacks. Midgard is a middlebox that resides at the edge of an Internet service provider’s network and uses client puzzles at the IP level to allocate bandwidth to its users. At the intra-networking level, we present sShield, a game-theoretic network response engine that manipulates a network’s connectivity in response to an attacker who is moving laterally to compromise a high-value asset. To implement such decision making algorithms, we leverage the recent advances in software-defined networking (SDN) to collect logs and security alerts about the network and implement response actions. However, the programma- bility offered by SDN comes with an increased chance for design-time bugs that can have drastic consequences on the reliability and security of a networked system. We therefore introduce BiFrost, an open-source tool that aims to verify safety and security proper- ties about data-plane programs. BiFrost translates data-plane programs into functionally equivalent sequential circuits, and then uses well-established hardware reduction, abstrac- tion, and verification techniques to establish correctness proofs about data-plane programs. By focusing on those four key efforts, CPuzzle, Midgard, sShield, and BiFrost, we believe that this work illustrates the benefits that the synergy between theory and practice can bring into the world of resilient system design. This thesis is an attempt to pave the way for further cooperation and coordination between theoreticians and practitioners, in the hope of designing resilient networked systems

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine EinfĂĽhrung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. AnschlieĂźend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing

    Overcoming Roadblocks in Introducing Virtual World Technology to High Schools

    Get PDF
    The EAST (Environmental And Spatial Technology) Initiative is a non-profit educational organization that provides students in over two hundred schools in eight states with access to advanced computing technologies for the purpose of enabling students to develop technical skills early and to produce solutions to local community problems. Although many high-end technologies are available through EAST, they are desktop solutions that individual students use and there are none that enable students within a school or between schools to collaborate. This thesis is a saga that documents the identification and removal of many roadblocks to introducing a 3D multi-user virtual simulation platform known as OpenSimulator into an EAST high school, Greenland High, located in Northwest Arkansas. The end result seemed compelling, simple and achievable -- with OpenSimulator, students from one or many EAST Labs would be able connect, chat, and work together within the same or nearby virtual areas to build models of (parts and aspects of) their communities. But getting to the point where students can begin to use this platform involved solving cost, safety, firewall, administrative, sustainability, and other puzzles. Most of this thesis is concerned with solving problems up to introducing OpenSimulator to Greenland -- more work is needed in understanding whether and how this kind of technology will benefit high school computing programs like EAST

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress
    • …
    corecore