6,385 research outputs found

    A new agents-based model for dynamic job allocation in manufacturing shopfloors

    Get PDF

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: ñ€ƓHow should we plan and execute logistics in supply chains that aim to meet todayñ€ℱs requirements, and how can we support such planning and execution using IT?ñ€ Todayñ€ℱs requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting todayñ€ℱs requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    A multi-agent system with application in project scheduling

    Get PDF
    The new economic and social dynamics increase project complexity and makes scheduling problems more difficult, therefore scheduling requires more versatile solutions as Multi Agent Systems (MAS). In this paper the authors analyze the implementation of a Multi-Agent System (MAS) considering two scheduling problems: TCPSP (Time-Constrained Project Scheduling), and RCPSP (Resource-Constrained Project Scheduling). The authors propose an improved BDI (Beliefs, Desires, and Intentions) model and present the first the MAS implementation results in JADE platform.multi-agent architecture, scheduling, project management, BDI architecture, JADE.

    Parallel memetic algorithms for independent job scheduling in computational grids

    Get PDF
    In this chapter we present parallel implementations of Memetic Algorithms (MAs) for the problem of scheduling independent jobs in computational grids. The problem of scheduling in computational grids is known for its high demanding computational time. In this work we exploit the intrinsic parallel nature of MAs as well as the fact that computational grids offer large amount of resources, a part of which could be used to compute the efficient allocation of jobs to grid resources. The parallel models exploited in this work for MAs include both fine-grained and coarse-grained parallelization and their hybridization. The resulting schedulers have been tested through different grid scenarios generated by a grid simulator to match different possible configurations of computational grids in terms of size (number of jobs and resources) and computational characteristics of resources. All in all, the result of this work showed that Parallel MAs are very good alternatives in order to match different performance requirement on fast scheduling of jobs to grid resources.Peer ReviewedPostprint (author's final draft

    Cooperative intelligent system for manufacturing scheduling

    Get PDF
    Hybridization of intelligent systems is a promising research field of computational intelligence focusing on combinations of multiple approaches to develop the next generation of intelligent systems. In this paper we will model a Manufacturing System by means of Multi-Agent Systems and Meta-Heuristics technologies, where each agent may represent a processing entity (machine). The objective of the system is to deal with the complex problem of Dynamic Scheduling in Manufacturing Systems

    Autonomic computing for scheduling in manufacturing systems

    Get PDF
    We describe a novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Autonomic Computing has emerged as paradigm aiming at embedding applications with a management structure similar to a central nervous system. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. In this paper we envisage the use of Multi-Agent Systems paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with Autonomic properties, in order to reduce the complexity of managing systems and human interference. Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems

    Multi Site Coordination using a Multi-Agent System

    Get PDF
    A new approach of coordination of decisions in a multi site system is proposed. It is based this approach on a multi-agent concept and on the principle of distributed network of enterprises. For this purpose, each enterprise is defined as autonomous and performs simultaneously at the local and global levels. The basic component of our approach is a so-called Virtual Enterprise Node (VEN), where the enterprise network is represented as a set of tiers (like in a product breakdown structure). Within the network, each partner constitutes a VEN, which is in contact with several customers and suppliers. Exchanges between the VENs ensure the autonomy of decision, and guarantiee the consistency of information and material flows. Only two complementary VEN agents are necessary: one for external interactions, the Negotiator Agent (NA) and one for the planning of internal decisions, the Planner Agent (PA). If supply problems occur in the network, two other agents are defined: the Tier Negotiator Agent (TNA) working at the tier level only and the Supply Chain Mediator Agent (SCMA) working at the level of the enterprise network. These two agents are only active when the perturbation occurs. Otherwise, the VENs process the flow of information alone. With this new approach, managing enterprise network becomes much more transparent and looks like managing a simple enterprise in the network. The use of a Multi-Agent System (MAS) allows physical distribution of the decisional system, and procures a heterarchical organization structure with a decentralized control that guaranties the autonomy of each entity and the flexibility of the network

    MASDScheGATS - Scheduling System for Dynamic Manufacturing Environmemts

    Get PDF
    This chapter addresses the resolution of scheduling in manufacturing systems subject to perturbations. The planning of Manufacturing Systems involves frequently the resolution of a huge amount and variety of combinatorial optimisation problems with an important impact on the performance of manufacturing organisations. Examples of those problems are the sequencing and scheduling problems in manufacturing management, routing and transportation, layout design and timetabling problems
    • 

    corecore