7,148 research outputs found

    A New Approach for Quality Management in Pervasive Computing Environments

    Full text link
    This paper provides an extension of MDA called Context-aware Quality Model Driven Architecture (CQ-MDA) which can be used for quality control in pervasive computing environments. The proposed CQ-MDA approach based on ContextualArchRQMM (Contextual ARCHitecture Quality Requirement MetaModel), being an extension to the MDA, allows for considering quality and resources-awareness while conducting the design process. The contributions of this paper are a meta-model for architecture quality control of context-aware applications and a model driven approach to separate architecture concerns from context and quality concerns and to configure reconfigurable software architectures of distributed systems. To demonstrate the utility of our approach, we use a videoconference system.Comment: 10 pages, 10 Figures, Oral Presentation in ECSA 201

    On cost-effective reuse of components in the design of complex reconfigurable systems

    Get PDF
    Design strategies that benefit from the reuse of system components can reduce costs while maintaining or increasing dependability—we use the term dependability to tie together reliability and availability. D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) is a methodology that supports the design of complex systems with a focus on reconfiguration and component reuse. D3H2 systematizes the identification of heterogeneous redundancies and optimizes the design of fault detection and reconfiguration mechanisms, by enabling the analysis of design alternatives with respect to dependability and cost. In this paper, we extend D3H2 for application to repairable systems. The method is extended with analysis capabilities allowing dependability assessment of complex reconfigurable systems. Analysed scenarios include time-dependencies between failure events and the corresponding reconfiguration actions. We demonstrate how D3H2 can support decisions about fault detection and reconfiguration that seek to improve dependability while reducing costs via application to a realistic railway case study

    Model-Based Runtime Adaptation of Resource Constrained Devices

    Get PDF
    Dynamic Software Product Line (DSPL) engineering represents a promising approach for planning and applying runtime reconfiguration scenarios to self-adaptive software systems. Reconfigurations at runtime allow those systems to continuously adapt themselves to ever changing contextual requirements. With a systematic engineering approach such as DSPLs, a self-adaptive software system becomes more reliable and predictable. However, applying DSPLs in the vital domain of highly context-aware systems, e.g., mobile devices such as smartphones or tablets, is obstructed by the inherently limited resources. Therefore, mobile devices are not capable to handle large, constrained (re-)configuration spaces of complex self-adaptive software systems. The reconfiguration behavior of a DSPL is specified via so called feature models. However, the derivation of a reconfiguration based on a feature model (i) induces computational costs and (ii) utilizes the available memory. To tackle these drawbacks, I propose a model-based approach for designing DSPLs in a way that allows for a trade-off between pre-computation of reconfiguration scenarios at development time and on-demand evolution at runtime. In this regard, I intend to shift computational complexity from runtime to development time. Therefore, I propose the following three techniques for (1) enriching feature models with context information to reason about potential contextual changes, (2) reducing a DSPL specification w.r.t. the individual characteristics of a mobile device, and (3) specifying a context-aware reconfiguration process on the basis of a scalable transition system incorporating state space abstractions and incremental refinements at runtime. In addition to these optimization steps executed prior to runtime, I introduce a concept for (4) reducing the operational costs utilized by a reconfiguration at runtime on a long-term basis w.r.t. the DSPL transition system deployed on the device. To realize this concept, the DSPL transition system is enriched with non-functional properties, e.g., costs of a reconfiguration, and behavioral properties, e.g., the probability of a change within the contextual situation of a device. This provides the possibility to determine reconfigurations with minimum costs w.r.t. estimated long-term changes in the context of a device. The concepts and techniques contributed in this thesis are illustrated by means of a mobile device case study. Further, implementation strategies are presented and evaluated considering different trade-off metrics to provide detailed insights into benefits and drawbacks
    • …
    corecore