146,084 research outputs found

    Powertrain Fuel Consumption Modeling and Benchmark Analysis of a Parallel P4 Hybrid Electric Vehicle Using Dynamic Programming

    Get PDF
    As regulations on the emission of greenhouse gasses continue to tighten on the automotive industry, the production of hybrid electric vehicles has gained significant popularity in recent years. With the increase in production, there has been a parallel demand in the advancement of both mechanical hardware and control system implementation used in these vehicles. A critical factor in the efficient operation of a hybrid electric vehicle is the energy management strategy where the goal is to maximize the efficient use of fuel energy to propel the vehicle. Designing a fuel-efficient control system is a complex challenge due to the degrees of freedom that exist in the control of a hybrid electric vehicle. Several methods exist for the real-time implementation of control strategies that employ heuristic or optimization-based algorithms; however, these control strategies typically rely on the results of offline optimization as a benchmark against which the control strategies are evaluated. Offline energy management optimization strategies require a pre-defined driving schedule for which the operation of the powertrain can be evaluated to determine the globally optimal control policy. The goal of this work is to develop a hybrid electric vehicle model that is suitable for use in a dynamic programming algorithm that provides the benchmark for optimal control of the hybrid powertrain. The benchmark analysis employs dynamic programming by backward induction to determine the globally optimal solution by solving the energy management problem starting at the final timestep and proceeding backwards in time. This method requires the development of a backwards facing model that propagates the wheel speed of the vehicle for the given drive cycle through the driveline components to determine the operating points of the powertrain. Although dynamic programming only searches the solution space within the feasible regions of operation, the benchmarking model must be solved for every admissible state at every timestep leading to strict requirements for runtime and memory. The backward facing model employs the quasi-static assumption of powertrain operation to reduce the fidelity of the model to accommodate these requirements. Verification and validation testing of the dynamic programming algorithm is conducted to ensure successful operation of the algorithm and to assess the validity of the determined control policy against a high-fidelity forward-facing vehicle model with a percent difference of fuel consumption of 1.2%. The benchmark analysis is conducted over multiple drive cycles to determine the optimal control policy that provides a benchmark for real-time algorithm development and determine control trends that can be used to improve existing algorithms. The optimal combined CS fuel economy of the vehicle is determined by the dynamic programming algorithm to be 32.99 MPG, a 52.6% increase over the stock 3.6L 2019 Chevrolet Blazer

    Real-time control strategies for hybrid vehicles issued from optimization algorithm

    Get PDF
    International audienceThis paper focuses on a mild-hybrid city car (Smart), equipped with a starter-alternator, where the kinetic energy in the braking phases can be recovered to be stored in a supercapacitor, and re-used later via the electric motor. The additional traction power allows to downsize the engine and still fulfill the power requirements. Moreover, the engine can be turned off in idle phases. The optimal control problem of the energy management between the two power sources is solved for given driving cycles by a classical dynamic programming method. From dynamic models of the electric motor and supercapacitor a quasistatic model of the whole system is derived and used in the optimization. The real time control law to be implemented on the vehicle is derived from the resulting optimal control strategies

    Optimal Energy Saving Adaptive Cruise Control in Overtaking Scenarios for a Hybrid Electric Vehicle

    Get PDF
    The overtaking planning problem plays a crucial role to foster the adaptive cruise control (ACC) technology. It reveals extremely challenging due to critical requirements on the real-time capability of the control system and on conflicting objectives for the longitudinal speed trajectory generated over time for the Following Vehicle (e.g. in terms of maneuver efficiency, passenger comfort, energy economy). In this paper, an approach to solve this problem is proposed by developing an optimal energy saving oriented ACC algorithm for overtaking scenarios considering a hybrid electric vehicle (HEV) as the Following Vehicle. An off-line optimization based on Dynamic Programming (DP) is implemented. The proposed DP formulation aims at controlling the Following Vehicle longitudinal jerk over time to minimize the overall HEV energy consumption throughout the overtaking maneuver. Optimization constraints are considered for the inter-vehicular distance between Leader Vehicle and Following vehicle over time, and for the operational limits of the HEV powertrain components. The developed ACC algorithm is demonstrated achieving up to 4.1% energy saving and significant improvements in terms of passenger comfort in different overtaking scenarios

    Optimization-Based Power Management of Hybrid Power Systems with Applications in Advanced Hybrid Electric Vehicles and Wind Farms with Battery Storage

    Get PDF
    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, ``brain\u27 of these ``hybrid\u27 systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with ``else-then-if\u27 logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may result in the need for repeated control system redesign. To address these shortcomings, we formulate the power management problem as a nonlinear and constrained optimal control problem. Solution of this optimal control problem in real-time on chronometric- and memory- constrained automotive microcontrollers is quite challenging; this computational complexity is due to the highly nonlinear dynamics of the powertrain subsystems, mixed-integer switching modes of their operation, and time-varying and nonlinear hard constraints that system variables should satisfy. The main contribution of the first part of the dissertation is that it establishes methods for systematic and step-by step improvements in fuel economy while maintaining the algorithmic computational requirements in a real-time implementable framework. More specifically a linear time-varying model predictive control approach is employed first which uses sequential quadratic programming to find sub-optimal solutions to the power management problem. Next the objective function is further refined and broken into a short and a long horizon segments; the latter approximated as a function of the state using the connection between the Pontryagin minimum principle and Hamilton-Jacobi-Bellman equations. The power management problem is then solved using a nonlinear MPC framework with a dynamic programming solver and the fuel economy is further improved. Typical simplifying academic assumptions are minimal throughout this work, thanks to close collaboration with research scientists at Ford research labs and their stringent requirement that the proposed solutions be tested on high-fidelity production models. Simulation results on a high-fidelity model of a hybrid electric vehicle over multiple standard driving cycles reveal the potential for substantial fuel economy gains. To address the control calibration challenges, we also present a novel and fast calibration technique utilizing parallel computing techniques. The second part of this dissertation presents an optimization-based control strategy for the power management of a wind farm with battery storage. The strategy seeks to minimize the error between the power delivered by the wind farm with battery storage and the power demand from an operator. In addition, the strategy attempts to maximize battery life. The control strategy has two main stages. The first stage produces a family of control solutions that minimize the power error subject to the battery constraints over an optimization horizon. These solutions are parameterized by a given value for the state of charge at the end of the optimization horizon. The second stage screens the family of control solutions to select one attaining an optimal balance between power error and battery life. The battery life model used in this stage is a weighted Amp-hour (Ah) throughput model. The control strategy is modular, allowing for more sophisticated optimization models in the first stage, or more elaborate battery life models in the second stage. The strategy is implemented in real-time in the framework of Model Predictive Control (MPC)

    Transient stability assessment of hybrid distributed generation using computational intelligence approaches

    Get PDF
    Includes bibliographical references.Due to increasing integration of new technologies into the grid such as hybrid electric vehicles, distributed generations, power electronic interface circuits, advanced controllers etc., the present power system network is now more complex than in the past. Consequently, the recent rate of blackouts recorded in some parts of the world indicates that the power system is stressed. The real time/online monitoring and prediction of stability limit is needed to prevent future blackouts. In the last decade, Distributed Generators (DGs) among other technologies have received increasing attention. This is because DGs have the capability to meet peak demand, reduce losses, due to proximity to consumers and produce clean energy and thus reduce the production of COâ‚‚. More benefits can be obtained when two or more DGs are combined together to form what is known as Hybrid Distributed Generation (HDG). The challenge with hybrid distributed generation (HDG) powered by intermittent renewable energy sources such as solar PV, wind turbine and small hydro power is that the system is more vulnerable to instabilities compared to single renewable energy source DG. This is because of the intermittent nature of the renewable energy sources and the complex interaction between the DGs and the distribution network. Due to the complexity and the stress level of the present power system network, real time/online monitoring and prediction of stability limits is becoming an essential and important part of present day control centres. Up to now, research on the impact of HDG on the transient stability is very limited. Generally, to perform transient stability assessment, an analytical approach is often used. The analytical approach requires a large volume of data, detailed mathematical equations and the understanding of the dynamics of the system. Due to the unavailability of accurate mathematical equations for most dynamic systems, and given the large volume of data required, the analytical method is inadequate and time consuming. Moreover, it requires long simulation time to assess the stability limits of the system. Therefore, the analytical approach is inadequate to handle real time operation of power system. In order to carry out real time transient stability assessment under an increasing nonlinear and time varying dynamics, fast scalable and dynamic algorithms are required. Transient Stability Assessment Of Hybrid Distributed Generation Using Computational Intelligence Approaches These algorithms must be able to perform advanced monitoring, decision making, forecasting, control and optimization. Computational Intelligence (CI) based algorithm such as neural networks coupled with Wide Area Monitoring System (WAMS) such as Phasor Measurement Unit (PMUs) have been shown to successfully model non-linear dynamics and predict stability limits in real time. To cope with the shortcoming of the analytical approach, a computational intelligence method based on Artificial Neural Networks (ANNs) was developed in this thesis to assess transient stability in real time. Appropriate data related to the hybrid generation (i.e., Solar PV, wind generator, small hydropower) were generated using the analytical approach for the training and testing of the ANN models. In addition, PMUs integrated in Real Time Digital Simulator (RTDS) were used to gather data for the real time training of the ANNs and the prediction of the Critical Clearing Time (CCT)

    Synergy of smart grids and hybrid distributed generation on the value of energy storage

    Get PDF
    In smart grids, demand response and distributed energy systems aim to provide a higher degree of flexibility for load-shifting operations and the leverage to control intermittent wind supply. In this more dynamic energy system, deployment of energy storage at the site of consumption is envisioned to create synergies with the local distributed generation (DG) system. From a large end-user perspective, this paper contributes to the practical understanding of smart grids by modelling the impact of real-time pricing schemes (smart grids) on a hybrid DG system (mixed generation for heating and electricity loads) coupled with storage units. Specifically, we address: How does the portfolio of DG units affect the value of energy storage? and, what is the value of energy storage when assessing different designs of demand response for the end-user? To this end, we formulate a dynamic optimization model to represent a real-life urban community’s energy system composed of a co-generation unit, gas boilers, electrical heaters and a wind turbine. We discuss the techno-economic benefits of complementing this end-user’s energy system with storage units (thermal storage and battery devices). The paper analyses the storages policy strategies to simultaneously satisfy heat and electricity demand through the efficient use of DG units under demand response mechanisms. Results indicate that the storage units reduce energy costs by 7–10% in electricity and 3% in gas charges. In cases with a large DG capacity, the supply–demand mismatch increases, making storage more valuable

    Predictive Energy Management in Connected Vehicles: Utilizing Route Information Preview for Energy Saving

    Get PDF
    This dissertation formulates algorithms that use preview information of road terrain and traffic flow for reducing energy use and emissions of modern vehicles with conventional or hybrid powertrains. Energy crisis, long term energy deficit, and more restrictive environmental protection policies require developing more efficient and cleaner vehicle powertrain systems. An alternative to making advanced technology engines or electrifying the vehicle powertrain is utilizing ambient terrain and traffic information in the energy management of vehicles, a topic which has not been emphasized in the past. Today\u27s advances in vehicular telematics and advances in GIS (Geographic Information System), GPS (Global Positioning Systems), ITS (Intelligent Transportation Systems), V2V (Vehicle to Vehicle) communication, and VII (Vehicle Infrastructure Integration ) create more opportunities for predicting a vehicle\u27s trip information with details such as the future road grade, the distance to the destination, speed constraints imposed by the traffic flow, which all can be utilized for better vehicle energy management. Optimal or near optimal decision-making based on this available information requires optimal control methods, whose fundamental theories were well studied in the past but are not directly applicable due to the complexity of real problems and uncertainty in the available preview information. This dissertation proposes the use of optimal control theories and tools including Pontryagin minimum principle, Dynamic Programming (DP) which is a numerical realization of Bellman\u27s principle of optimality, and Model Predictive Control (MPC) in the optimization-based control of hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and conventional vehicles based on preview of future route information. The dissertation includes three parts introduced as follows: First, the energy saving benefit in HEV energy management by previewing future terrain information and applying optimal control methods is explored. The potential gain in fuel economy is evaluated, if road grade information is integrated in energy management of hybrid vehicles. Real-world road geometry information is taken into account in power management decisions by using both Dynamic Programming (DP) and a standard Equivalent Consumption Minimization Strategy (ECMS), derived using Pontryagin minimum principle. Secondly, the contribution of different levels of preview to energy management of plug-in hybrid vehicles (PHEVs) is studied. The gains to fuel economy of plug-in hybrid vehicles with availability of velocity and terrain preview and knowledge of distance to the next charging station are investigated. Access to future driving information is classified into full, partial, or no future information and energy management strategies for real-time implementation with partial future preview are proposed. ECMS as well as Dynamic Programming (DP) is systematically utilized to handle the resulting optimal control problems with different levels of preview. We also study the benefit of future traffic flow information preview in improving the fuel economy of conventional vehicles by predictive control methods. According to the time-scale of the preview information and its importance to the driver, the energy optimization problem is decomposed into different levels. In the microscopic level, a model predictive controller as well as a car following model is employed for predictive adaptive cruise control by stochastically forecasting the driving behavior of the lead car. In the macroscopic level, we propose to incorporate the estimated macroscopic future traffic flow information and optimize the cost-to-go by utilizing a two-dimension Dynamic Programming (2D-DP). The algorithm yields the optimal trip velocity as the reference velocity for the driver or a low level controller to follow. Through the study, we show that energy use and emissions can be reduced considerably by using preview route information. The methodologies discussed in this dissertation provide an alternative mean for the automotive industry to develop more efficient and environmentally friendly vehicles by relying mostly on software and information and with minimal hardware investments

    Optimization-Driven Powertrain-Oriented Adaptive Cruise Control to Improve Energy Saving and Passenger Comfort

    Get PDF
    Assessing the potential of advanced driver assistance systems requires developing dedicated control algorithms for controlling the longitudinal speed of automated vehicles over time. In this paper, a multiobjective off-line optimal control approach for planning the speed of the following vehicle in adaptive cruise control (ACC) driving is proposed. The implemented method relies on the principle of global optimality fostered by dynamic programming (DP) and aims to minimize propelling energy consumption and enhance passenger comfort. The powertrain model and onboard control system are integrated within the proposed car-following optimization framework. The retained ACC approach ensures that the distance between the following vehicle and the preceding vehicle is always maintained within allowed limits. The flexibility of the proposed method is demonstrated here through ease of implementation on a wide range of powertrain categories, including a conventional vehicle propelled by an internal combustion engine solely, a pure electric vehicle, a parallel P2 hybrid electric vehicle (HEV) and a power-split HEV. Moreover, different driving conditions are considered to prove the effectiveness of the proposed optimization-driven ACC approach. Obtained simulation results suggest that up to 22% energy-saving and 48% passenger comfort improvement might be achieved for the ACC-enabled vehicle compared with the preceding vehicle by implementing the proposed optimization-driven ACC approach. Engineers may adopt the proposed workflow to evaluate corresponding real-time ACC approaches and assess optimal powertrain design solutions for ACC driving

    Energy Optimization of Smart Water Systems using UAV Enabled Zero-Power Wireless Communication Networks

    Get PDF
    Real-time energy consumption is a crucial consideration when assessing the effectiveness and efficiency of communication using energy hungry devices. Utilizing new technologies such as UAV-enabled wireless powered communication networks (WPCN) and 3D beamforming, and then a combination of static and dynamic optimization methodologies are combined to improve energy usage in water distribution systems (WDS). A proposed static optimization technique termed the Dome packing method and dynamic optimization methods such as extremum seeking are employed to generate optimum placement and trajectories of the UAV with respect to the ground nodes (GN) in a WDS. In this thesis, a wireless communication network powered by a UAV serves as a hybrid access point to manage many GNsin WDS. The GNs are water quality sensors that collect radio frequency (RF) energy from the RF signals delivered by the UAV and utilise this energy to relay information via an uplink. Optimum strategies are demonstrated to efficiently handle this process as part of a zero-power system: removing the need for manual battery charging of devices, while at the same time optimizing energy and data transfer over WPCN. Since static optimization does not account for the UAV's dynamics, dynamic optimization techniques are also necessary. By developing an efficient trajectory, the suggested technique also reduces the overall flying duration and, therefore, the UAV's energy consumption. This combination of techniques also drastically reduces the complexity and calculation overhead of purely high order static optimizations. To test and validate the efficacy of the extremum seeking implementation, comparison with the optimal sliding mode technique is also undertaken. These approaches are applied to ten distinct case studies by randomly relocating the GNs to various positions. The findings from a random sample of four of these is presented, which reveal that the proposed strategy reduces the UAV's energy usage significantly by about 16 percent compared to existing methods. The (hybrid) static and dynamic zero-power optimization strategies demonstrated here are readily extendable to the control of water quality and pollution in natural freshwater resources and this will be discussed at the end of this thesis

    ENERGY-AWARE OPTIMIZATION FOR EMBEDDED SYSTEMS WITH CHIP MULTIPROCESSOR AND PHASE-CHANGE MEMORY

    Get PDF
    Over the last two decades, functions of the embedded systems have evolved from simple real-time control and monitoring to more complicated services. Embedded systems equipped with powerful chips can provide the performance that computationally demanding information processing applications need. However, due to the power issue, the easy way to gain increasing performance by scaling up chip frequencies is no longer feasible. Recently, low-power architecture designs have been the main trend in embedded system designs. In this dissertation, we present our approaches to attack the energy-related issues in embedded system designs, such as thermal issues in the 3D chip multiprocessor (CMP), the endurance issue in the phase-change memory(PCM), the battery issue in the embedded system designs, the impact of inaccurate information in embedded system, and the cloud computing to move the workload to remote cloud computing facilities. We propose a real-time constrained task scheduling method to reduce peak temperature on a 3D CMP, including an online 3D CMP temperature prediction model and a set of algorithm for scheduling tasks to different cores in order to minimize the peak temperature on chip. To address the challenging issues in applying PCM in embedded systems, we propose a PCM main memory optimization mechanism through the utilization of the scratch pad memory (SPM). Furthermore, we propose an MLC/SLC configuration optimization algorithm to enhance the efficiency of the hybrid DRAM + PCM memory. We also propose an energy-aware task scheduling algorithm for parallel computing in mobile systems powered by batteries. When scheduling tasks in embedded systems, we make the scheduling decisions based on information, such as estimated execution time of tasks. Therefore, we design an evaluation method for impacts of inaccurate information on the resource allocation in embedded systems. Finally, in order to move workload from embedded systems to remote cloud computing facility, we present a resource optimization mechanism in heterogeneous federated multi-cloud systems. And we also propose two online dynamic algorithms for resource allocation and task scheduling. We consider the resource contention in the task scheduling
    • …
    corecore