5,825 research outputs found

    CLPGUI: a generic graphical user interface for constraint logic programming over finite domains

    Full text link
    CLPGUI is a graphical user interface for visualizing and interacting with constraint logic programs over finite domains. In CLPGUI, the user can control the execution of a CLP program through several views of constraints, of finite domain variables and of the search tree. CLPGUI is intended to be used both for teaching purposes, and for debugging and improving complex programs of realworld scale. It is based on a client-server architecture for connecting the CLP process to a Java-based GUI process. Communication by message passing provides an open architecture which facilitates the reuse of graphical components and the porting to different constraint programming systems. Arbitrary constraints and goals can be posted incrementally from the GUI. We propose several dynamic 2D and 3D visualizations of the search tree and of the evolution of finite domain variables. We argue that the 3D representation of search trees proposed in this paper provides the most appropriate visualization of large search trees. We describe the current implementation of the annotations and of the interactive execution model in GNU-Prolog, and report some evaluation results.Comment: 16 pages; Alexandre Tessier, editor; WLPE 2002, http://xxx.lanl.gov/abs/cs.SE/020705

    Visualizing the Results of a Complex Hybrid Dynamic-Static Analysis

    Get PDF
    Complex static or hybrid static-dynamic analyses produce large quantities of structured data. In the past, this data was generally intended for use by compilers or other software tools that used the produced information to transform the application being analyzed. However, it is becomingly increasingly common for the results of these analyses to be used directly by humans. For example, in our own prior work we have developed a hybrid dynamic-static escape analysis intended to help developers identify sources of object churn within large framework-base applications. In order to facilitate human use of complex analysis results, visualizations need to be developed that allow a user to browse these results and to identify the points of interest within these large data sets. In this paper we present Hi-C, a visualization tool for our hybrid escape analysis that has been implemented as an Eclipse plugin. We show how Hi-C can help developers identify sources of object churn in a large framework-based application and how we have used the tool to assist in understanding the results of a complex analysis

    Obvious: a meta-toolkit to encapsulate information visualization toolkits. One toolkit to bind them all

    Get PDF
    This article describes “Obvious”: a meta-toolkit that abstracts and encapsulates information visualization toolkits implemented in the Java language. It intends to unify their use and postpone the choice of which concrete toolkit(s) to use later-on in the development of visual analytics applications. We also report on the lessons we have learned when wrapping popular toolkits with Obvious, namely Prefuse, the InfoVis Toolkit, partly Improvise, JUNG and other data management libraries. We show several examples on the uses of Obvious, how the different toolkits can be combined, for instance sharing their data models. We also show how Weka and RapidMiner, two popular machine-learning toolkits, have been wrapped with Obvious and can be used directly with all the other wrapped toolkits. We expect Obvious to start a co-evolution process: Obvious is meant to evolve when more components of Information Visualization systems will become consensual. It is also designed to help information visualization systems adhere to the best practices to provide a higher level of interoperability and leverage the domain of visual analytics

    PerfVis: Pervasive Visualization in Immersive AugmentedReality for Performance Awareness

    Full text link
    Developers are usually unaware of the impact of code changes to the performance of software systems. Although developers can analyze the performance of a system by executing, for instance, a performance test to compare the performance of two consecutive versions of the system, changing from a programming task to a testing task would disrupt the development flow. In this paper, we propose the use of a city visualization that dynamically provides developers with a pervasive view of the continuous performance of a system. We use an immersive augmented reality device (Microsoft HoloLens) to display our visualization and extend the integrated development environment on a computer screen to use the physical space. We report on technical details of the design and implementation of our visualization tool, and discuss early feedback that we collected of its usability. Our investigation explores a new visual metaphor to support the exploration and analysis of possibly very large and multidimensional performance data. Our initial result indicates that the city metaphor can be adequate to analyze dynamic performance data on a large and non-trivial software system.Comment: ICPE'19 vision, 4 pages, 2 figure, conferenc

    A Concurrency-Agnostic Protocol for Multi-Paradigm Concurrent Debugging Tools

    Get PDF
    Today's complex software systems combine high-level concurrency models. Each model is used to solve a specific set of problems. Unfortunately, debuggers support only the low-level notions of threads and shared memory, forcing developers to reason about these notions instead of the high-level concurrency models they chose. This paper proposes a concurrency-agnostic debugger protocol that decouples the debugger from the concurrency models employed by the target application. As a result, the underlying language runtime can define custom breakpoints, stepping operations, and execution events for each concurrency model it supports, and a debugger can expose them without having to be specifically adapted. We evaluated the generality of the protocol by applying it to SOMns, a Newspeak implementation, which supports a diversity of concurrency models including communicating sequential processes, communicating event loops, threads and locks, fork/join parallelism, and software transactional memory. We implemented 21 breakpoints and 20 stepping operations for these concurrency models. For none of these, the debugger needed to be changed. Furthermore, we visualize all concurrent interactions independently of a specific concurrency model. To show that tooling for a specific concurrency model is possible, we visualize actor turns and message sends separately.Comment: International Symposium on Dynamic Language

    Visualizing networked writing activity

    Get PDF
    In conjunction with the Honors Fellow program and two faculty advisors from both the English and Computer Science departments, another student and I have written software to visualize how participants collaborate on networked writing projects. Using Google Docs as a way to allow students to instantaneously interact with a document in real-time, this software captures data from Google's cloud service and displays it in a pair of visualizations. We used agile methods of software development to devise a way to implement their ideas in an appealing way. This document contains detailed instructions on where the latest iteration of the software can be located. It also details the process of making the system operational on a new machine, stating how the software works and where it should be placed in the file system. The document also explains how one can use the system to visualize writing collaboration. Finally, many failed iterations of the software have led to meaningful reflections on software development practices. The document serves as a technical report for the software, but also elaborates on the hardships of development, as well as provides insight on how this software may evolve toward richer experiences. Also included is an Author's Statement which reveals many of the learning experiences that arose throughout the development of this project.Honors CollegeThesis (B.?.
    • …
    corecore