60,013 research outputs found

    ROPocop - Dynamic Mitigation of Code-Reuse Attacks

    Full text link
    Control-flow attacks, usually achieved by exploiting a buffer-overflow vulnerability, have been a serious threat to system security for over fifteen years. Researchers have answered the threat with various mitigation techniques, but nevertheless, new exploits that successfully bypass these technologies still appear on a regular basis. In this paper, we propose ROPocop, a novel approach for detecting and preventing the execution of injected code and for mitigating code-reuse attacks such as return-oriented programming (RoP). ROPocop uses dynamic binary instrumentation, requiring neither access to source code nor debug symbols or changes to the operating system. It mitigates attacks by both monitoring the program counter at potentially dangerous points and by detecting suspicious program flows. We have implemented ROPocop for Windows x86 using PIN, a dynamic program instrumentation framework from Intel. Benchmarks using the SPEC CPU2006 suite show an average overhead of 2.4x, which is comparable to similar approaches, which give weaker guarantees. Real-world applications show only an initially noticeable input lag and no stutter. In our evaluation our tool successfully detected all 11 of the latest real-world code-reuse exploits, with no false alarms. Therefore, despite the overhead, it is a viable, temporary solution to secure critical systems against exploits if a vendor patch is not yet available

    Dynamic and Transparent Analysis of Commodity Production Systems

    Full text link
    We propose a framework that provides a programming interface to perform complex dynamic system-level analyses of deployed production systems. By leveraging hardware support for virtualization available nowadays on all commodity machines, our framework is completely transparent to the system under analysis and it guarantees isolation of the analysis tools running on its top. Thus, the internals of the kernel of the running system needs not to be modified and the whole platform runs unaware of the framework. Moreover, errors in the analysis tools do not affect the running system and the framework. This is accomplished by installing a minimalistic virtual machine monitor and migrating the system, as it runs, into a virtual machine. In order to demonstrate the potentials of our framework we developed an interactive kernel debugger, nicknamed HyperDbg. HyperDbg can be used to debug any critical kernel component, and even to single step the execution of exception and interrupt handlers.Comment: 10 pages, To appear in the 25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, 20-24 September 201

    Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

    Full text link
    Malware analysis and detection techniques have been evolving during the last decade as a reflection to development of different malware techniques to evade network-based and host-based security protections. The fast growth in variety and number of malware species made it very difficult for forensics investigators to provide an on time response. Therefore, Machine Learning (ML) aided malware analysis became a necessity to automate different aspects of static and dynamic malware investigation. We believe that machine learning aided static analysis can be used as a methodological approach in technical Cyber Threats Intelligence (CTI) rather than resource-consuming dynamic malware analysis that has been thoroughly studied before. In this paper, we address this research gap by conducting an in-depth survey of different machine learning methods for classification of static characteristics of 32-bit malicious Portable Executable (PE32) Windows files and develop taxonomy for better understanding of these techniques. Afterwards, we offer a tutorial on how different machine learning techniques can be utilized in extraction and analysis of a variety of static characteristic of PE binaries and evaluate accuracy and practical generalization of these techniques. Finally, the results of experimental study of all the method using common data was given to demonstrate the accuracy and complexity. This paper may serve as a stepping stone for future researchers in cross-disciplinary field of machine learning aided malware forensics.Comment: 37 Page
    • …
    corecore