9,467 research outputs found

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Traffic Profiling for Mobile Video Streaming

    Full text link
    This paper describes a novel system that provides key parameters of HTTP Adaptive Streaming (HAS) sessions to the lower layers of the protocol stack. A non-intrusive traffic profiling solution is proposed that observes packet flows at the transmit queue of base stations, edge-routers, or gateways. By analyzing IP flows in real time, the presented scheme identifies different phases of an HAS session and estimates important application-layer parameters, such as play-back buffer state and video encoding rate. The introduced estimators only use IP-layer information, do not require standardization and work even with traffic that is encrypted via Transport Layer Security (TLS). Experimental results for a popular video streaming service clearly verify the high accuracy of the proposed solution. Traffic profiling, thus, provides a valuable alternative to cross-layer signaling and Deep Packet Inspection (DPI) in order to perform efficient network optimization for video streaming.Comment: 7 pages, 11 figures. Accepted for publication in the proceedings of IEEE ICC'1

    Hardware acceleration architectures for MPEG-Based mobile video platforms: a brief overview

    Get PDF
    This paper presents a brief overview of past and current hardware acceleration (HwA) approaches that have been proposed for the most computationally intensive compression tools of the MPEG-4 standard. These approaches are classified based on their historical evolution and architectural approach. An analysis of both evolutionary and functional classifications is carried out in order to speculate on the possible trends of the HwA architectures to be employed in mobile video platforms

    EACOF: A Framework for Providing Energy Transparency to enable Energy-Aware Software Development

    Full text link
    Making energy consumption data accessible to software developers is an essential step towards energy efficient software engineering. The presence of various different, bespoke and incompatible, methods of instrumentation to obtain energy readings is currently limiting the widespread use of energy data in software development. This paper presents EACOF, a modular Energy-Aware Computing Framework that provides a layer of abstraction between sources of energy data and the applications that exploit them. EACOF replaces platform specific instrumentation through two APIs - one accepts input to the framework while the other provides access to application software. This allows developers to profile their code for energy consumption in an easy and portable manner using simple API calls. We outline the design of our framework and provide details of the API functionality. In a use case, where we investigate the impact of data bit width on the energy consumption of various sorting algorithms, we demonstrate that the data obtained using EACOF provides interesting, sometimes counter-intuitive, insights. All the code is available online under an open source license. http://github.com/eaco

    Hardware/Software Co-design Applied to Reed-Solomon Decoding for the DMB Standard

    Get PDF
    This paper addresses the implementation of Reed- Solomon decoding for battery-powered wireless devices. The scope of this paper is constrained by the Digital Media Broadcasting (DMB). The most critical element of the Reed-Solomon algorithm is implemented on two different reconfigurable hardware architectures: an FPGA and a coarse-grained architecture: the Montium, The remaining parts are executed on an ARM processor. The results of this research show that a co-design of the ARM together with an FPGA or a Montium leads to a substantial decrease in energy consumption. The energy consumption of syndrome calculation of the Reed- Solomon decoding algorithm is estimated for an FPGA and a Montium by means of simulations. The Montium proves to be more efficient

    VirtFogSim: A parallel toolbox for dynamic energy-delay performance testing and optimization of 5G Mobile-Fog-Cloud virtualized platforms

    Get PDF
    It is expected that the pervasive deployment of multi-tier 5G-supported Mobile-Fog-Cloudtechnological computing platforms will constitute an effective means to support the real-time execution of future Internet applications by resource- and energy-limited mobile devices. Increasing interest in this emerging networking-computing technology demands the optimization and performance evaluation of several parts of the underlying infrastructures. However, field trials are challenging due to their operational costs, and in every case, the obtained results could be difficult to repeat and customize. These emergingMobile-Fog-Cloud ecosystems still lack, indeed, customizable software tools for the performance simulation of their computing-networking building blocks. Motivated by these considerations, in this contribution, we present VirtFogSim. It is aMATLAB-supported software toolbox that allows the dynamic joint optimization and tracking of the energy and delay performance of Mobile-Fog-Cloud systems for the execution of applications described by general Directed Application Graphs (DAGs). In a nutshell, the main peculiar features of the proposed VirtFogSim toolbox are that: (i) it allows the joint dynamic energy-aware optimization of the placement of the application tasks and the allocation of the needed computing-networking resources under hard constraints on acceptable overall execution times, (ii) it allows the repeatable and customizable simulation of the resulting energy-delay performance of the overall system; (iii) it allows the dynamic tracking of the performed resource allocation under time-varying operational environments, as those typically featuring mobile applications; (iv) it is equipped with a user-friendly Graphic User Interface (GUI) that supports a number of graphic formats for data rendering, and (v) itsMATLAB code is optimized for running atop multi-core parallel execution platforms. To check both the actual optimization and scalability capabilities of the VirtFogSim toolbox, a number of experimental setups featuring different use cases and operational environments are simulated, and their performances are compared

    Hand gesture recognition based on signals cross-correlation

    Get PDF
    • 

    corecore