1,262 research outputs found

    DAWM: cost-aware asset claim analysis approach on big data analytic computation model for cloud data centre.

    Get PDF
    The heterogeneous resource-required application tasks increase the cloud service provider (CSP) energy cost and revenue by providing demand resources. Enhancing CSP profit and preserving energy cost is a challenging task. Most of the existing approaches consider task deadline violation rate rather than performance cost and server size ratio during profit estimation, which impacts CSP revenue and causes high service cost. To address this issue, we develop two algorithms for profit maximization and adequate service reliability. First, a belief propagation-influenced cost-aware asset scheduling approach is derived based on the data analytic weight measurement (DAWM) model for effective performance and server size optimization. Second, the multiobjective heuristic user service demand (MHUSD) approach is formulated based on the CPS profit estimation model and the user service demand (USD) model with dynamic acyclic graph (DAG) phenomena for adequate service reliability. The DAWM model classifies prominent servers to preserve the server resource usage and cost during an effective resource slicing process by considering each machine execution factor (remaining energy, energy and service cost, workload execution rate, service deadline violation rate, cloud server configuration (CSC), service requirement rate, and service level agreement violation (SLAV) penalty rate). The MHUSD algorithm measures the user demand service rate and cost based on the USD and CSP profit estimation models by considering service demand weight, tenant cost, and energy cost. The simulation results show that the proposed system has accomplished the average revenue gain of 35%, cost of 51%, and profit of 39% than the state-of-the-art approaches

    An Online Auction Mechanism for Dynamic Virtual Cluster Provisioning in Geo-Distributed Clouds

    Get PDF
    postprin

    Dynamic Resource Scheduling in Mobile Edge Cloud with Cloud Radio Access Network

    Get PDF
    Nowadays, by integrating the cloud radio access network (C-RAN) with the mobile edge cloud computing (MEC) technology, mobile service provider (MSP) can efficiently handle the increasing mobile traffic and enhance the capabilities of mobile devices. But the power consumption has become skyrocketing for MSP and it gravely affects the profit of MSP. Previous work often studied the power consumption in C-RAN and MEC separately while less work had considered the integration of C-RAN with MEC. In this paper, we present an unifying framework for the power-performance tradeoff of MSP by jointly scheduling network resources in C-RAN and computation resources in MEC to maximize the profit of MSP. To achieve this objective, we formulate the resource scheduling issue as a stochastic problem and design a new optimization framework by using an extended Lyapunov technique. Specially, because the standard Lyapunov technique critically assumes that job requests have fixed lengths and can be finished within each decision making interval, it is not suitable for the dynamic situation where the mobile job requests have variable lengths. To solve this problem, we extend the standard Lyapunov technique and design the VariedLen algorithm to make online decisions in consecutive time for job requests with variable lengths. Our proposed algorithm can reach time average profit that is close to the optimum with a diminishing gap (1/V) for the MSP while still maintaining strong system stability and low congestion. With extensive simulations based on a real world trace, we demonstrate the efficacy and optimality of our proposed algorithm
    • …
    corecore