15,659 research outputs found

    Maximizing Profit in Green Cellular Networks through Collaborative Games

    Full text link
    In this paper, we deal with the problem of maximizing the profit of Network Operators (NOs) of green cellular networks in situations where Quality-of-Service (QoS) guarantees must be ensured to users, and Base Stations (BSs) can be shared among different operators. We show that if NOs cooperate among them, by mutually sharing their users and BSs, then each one of them can improve its net profit. By using a game-theoretic framework, we study the problem of forming stable coalitions among NOs. Furthermore, we propose a mathematical optimization model to allocate users to a set of BSs, in order to reduce costs and, at the same time, to meet user QoS for NOs inside the same coalition. Based on this, we propose an algorithm, based on cooperative game theory, that enables each operator to decide with whom to cooperate in order to maximize its profit. This algorithms adopts a distributed approach in which each NO autonomously makes its own decisions, and where the best solution arises without the need to synchronize them or to resort to a trusted third party. The effectiveness of the proposed algorithm is demonstrated through a thorough experimental evaluation considering real-world traffic traces, and a set of realistic scenarios. The results we obtain indicate that our algorithm allows a population of NOs to significantly improve their profits thanks to the combination of energy reduction and satisfaction of QoS requirements.Comment: Added publisher info and citation notic

    Opportunities for Price Manipulation by Aggregators in Electricity Markets

    Get PDF
    Aggregators are playing an increasingly crucial role in the integration of renewable generation in power systems. However, the intermittent nature of renewable generation makes market interactions of aggregators difficult to monitor and regulate, raising concerns about potential market manipulation by aggregators. In this paper, we study this issue by quantifying the profit an aggregator can obtain through strategic curtailment of generation in an electricity market. We show that, while the problem of maximizing the benefit from curtailment is hard in general, efficient algorithms exist when the topology of the network is radial (acyclic). Further, we highlight that significant increases in profit are possible via strategic curtailment in practical settings
    • …
    corecore