17,439 research outputs found

    Expected Utility Maximization and Conditional Value-at-Risk Deviation-based Sharpe Ratio in Dynamic Stochastic Portfolio Optimization

    Get PDF
    In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation (CVaRDCVaRD) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the CVaRDCVaRD-based Sharpe ratio on the utility function and the associated risk aversion level

    Multi-Period Trading via Convex Optimization

    Full text link
    We consider a basic model of multi-period trading, which can be used to evaluate the performance of a trading strategy. We describe a framework for single-period optimization, where the trades in each period are found by solving a convex optimization problem that trades off expected return, risk, transaction cost and holding cost such as the borrowing cost for shorting assets. We then describe a multi-period version of the trading method, where optimization is used to plan a sequence of trades, with only the first one executed, using estimates of future quantities that are unknown when the trades are chosen. The single-period method traces back to Markowitz; the multi-period methods trace back to model predictive control. Our contribution is to describe the single-period and multi-period methods in one simple framework, giving a clear description of the development and the approximations made. In this paper we do not address a critical component in a trading algorithm, the predictions or forecasts of future quantities. The methods we describe in this paper can be thought of as good ways to exploit predictions, no matter how they are made. We have also developed a companion open-source software library that implements many of the ideas and methods described in the paper

    On efficiency of mean-variance based portfolio selection in DC pension schemes

    Get PDF
    We consider the portfolio selection problem in the accumulation phase of a defined contribution (DC) pension scheme. We solve the mean-variance portfolio selection problem using the embedding technique pioneered by Zhou and Li (2000) and show that it is equivalent to a target-based optimization problem, consisting in the minimization of a quadratic loss function. We support the use of the target-based approach in DC pension funds for three reasons. Firstly, it transforms the difficult problem of selecting the individual's risk aversion coefficient into the easiest task of choosing an appropriate target. Secondly, it is intuitive, flexible and adaptable to the member's needs and preferences. Thirdly, it produces final portfolios that are efficient in the mean-variance setting. We address the issue of comparison between an efficient portfolio and a portfolio that is optimal according to the more general criterion of maximization of expected utility (EU). The two natural notions of Variance Inefficiency and Mean Inefficiency are introduced, which measure the distance of an optimal inefficient portfolio from an efficient one, focusing on their variance and on their expected value, respectively. As a particular case, we investigate the quite popular classes of CARA and CRRA utility functions. In these cases, we prove the intuitive but not trivial results that the mean-variance inefficiency decreases with the risk aversion of the individual and increases with the time horizon and the Sharpe ratio of the risky asset. Numerical investigations stress the impact of the time horizon on the extent of mean-variance inefficiency of CARA and CRRA utility functions. While at instantaneous level EU-optimality and efficiency coincide (see Merton (1971)), we find that for short durations they do not differ significantly. However, for longer durations - that are typical in pension funds - the extent of inefficiency turns out to be remarkable and should be taken into account by pension fund investment managers seeking appropriate rules for portfolio selection. Indeed, this result is a further element that supports the use of the target-based approach in DC pension schemes.Mean-variance approach; efficient frontier; expected utility maximization; defined contribution pension scheme; portfolio selection; risk aversion; Sharpe ratio

    Tracking Error: a multistage portfolio model

    Get PDF
    We study multistage tracking error problems. Different tracking error measures, commonly used in static models, are discussed as well as some problems which arise when we move from static to dynamic models. We are interested in dynamically replicating a benchmark using only a small subset of assets, considering transaction costs due to rebalancing and introducing a liquidity component in the portfolio. We formulate and solve a multistage tracking error model in a stochastic programming framework. We numerically test our model by dynamically replicating the MSCI Euro index. We consider an increasing number of scenarios and assets and show the superior performance of the dynamically optimized tracking portfolio over static strategies.

    Mean-variance inefficiency of CRRA and CARA utility functions for portfolio selection in defined contribution pension schemes

    Get PDF
    We consider the portfolio selection problem in the accumulation phase of a defined contribution pension scheme in continuous time, and compare the mean-variance and the expected utility maximization approaches. Using the embedding technique pioneered by Zhou and Li (2000) we first find the efficient frontier of portfolios in the Black-Scholes financial market. Then, using standard stochastic optimal control we find the optimal portfolios derived via expected utility for popular utility functions. As a main result, we prove that the optimal portfolios derived with the CARA and CRRA utility functions are not mean-variance efficient. As a corollary, we prove that this holds also in the standard portfolio selection problem. We provide a natural measure of inefficiency based on the difference between optimal portfolio variance and minimal variance, and we show its dependence on risk aversion, Sharpe ratio of the risky asset, time horizon, initial wealth and contribution rate. Numerical examples illustrate the extent of inefficiency of CARA and CRRA utility functions in defined contribution pension schemes.Mean-variance approach, efficient frontier, expected utility maximization, defined contribution pension scheme, portfolio selection, risk aversion, Sharpe ratio

    CAPM and APT-like models with risk measures.

    Get PDF
    The paper deals with optimal portfolio choice problems when risk levels are given by coherent risk mea sures, expectation bounded risk measures or general deviations. Both static and dynamic pricing models may be involved. Unbounded problems are characterized by new notions such as (strong) compatibility between prices and risks. Surprisingly, the lack of bounded optimal risk and/or return levels arises for important pricing models (Black and Scholes) and risk measures (VaR, CVaR, absolute deviation, etc.). Bounded problems present a Market Price of Risk and generate a pair of benchmarks. From these bench marks we introduce APT and CAPM like analyses, in the sense that the level of correlation between every available security and some economic factors explains the security expected return. The risk level non correlated with these factors has no influence on any return, despite the fact that we are dealing with risk functions beyond the standard deviation.Risk measure; Compatibility between prices and risks; Efficient portfolio; APT and CAPM-like models;
    • ā€¦
    corecore