446 research outputs found

    Dynamic point-region quadtrees for particle simulations

    Get PDF
    Cataloged from PDF version of article.We propose an algorithm for dynamically updating point-region (PR) quadtrees. Our algorithm is optimized for simultaneous update of data points comprising a quadtree. The intended application area focuses on simulating continuum phenomena, such as crowds, fluids, and smoke. We minimize the number of tree updates by making use of small changes in the positions of data points. We compare the efficiency of the proposed algorithm with two other approaches for updating a quadtree. One of these techniques creates the tree from scratch at each time-step. The second technique subsequently deletes a data point from the tree and reinserts it in its updated position. We achieve significant performance gains with our method in both cases. (C) 2012 Elsevier Inc. All rights reserved

    A Benchmark and analysis of spatial data structures for physical simulations

    Get PDF
    Collision detection is an issue in physical simulations; without it simulations are inaccurate. Unfortunately, effective collision detection can require a significant amount of computational power. To reduce the number of computations and make the problem more tractable, computer scientists have used date structures to partition the system. This removes the need to have every single partical check for possible collisions with every other particle in the system; however, generic data structures typically do not work as well as specialized data structures, so this has led to the creation of multiple spatial data structures. Some spatial data structures and algorithms were customized and created to optimize memory usage while others have been made to increase speed. This project seeks to compare spatial data structures in systems with uniformly and non-uniformly distributed particles, while varying the number of particles and the filling factor. The results of this project should provide useful information to those doing general collisional simulations, such as physicists and engineers

    A Potential-Field-Based Multilevel Algorithm for Drawing Large Graphs

    Get PDF
    The aim of automatic graph drawing is to compute a well-readable layout of a given graph G=(V,E). One very popular class of algorithms for drawing general graphs are force-directed methods. These methods generate drawings of G in the plane so that each edge is represented by a straight line connecting its two adjacent nodes. The computation of the drawings is based on associating G with a physical model. Then, the algorithms iteratively try to find a placement of the nodes so that the total energy of the physical system is minimal. Several force-directed methods can visualize large graphs containing many thousands of vertices in reasonable time. However, only some of these methods guarantee a sub-quadratic running time in special cases or under certain assumptions, but not in general. The others are not sub-quadratic at all. We develop a new force-directed algorithm that is based on a combination of an efficient multilevel strategy and a method for approximating the repulsive forces in the system by rapidly evaluating potential fields. The worst-case running time of the new method is O(|V| log|V|+|E|) with linear memory requirements. In practice, the algorithm generates nice drawings of graphs containing up to 100000 nodes in less than five minutes. Furthermore, it clearly visualizes even the structures of those graphs that turned out to be challenging for other tested methods

    Improved Collision Detection and Response Techniques for Cloth Animation

    Get PDF
    In the animation of deformable objects, collision detection and response are crucial for the performance. Contrary to volumetric bodies, the accuracy requirements for the collision treatment of textiles are particularly strict because any overlapping is visible. Therefore, we apply methods specifically designed for deformable surfaces that speed up the collision detection. In this paper the efficiency of bounding volume hierarchies is improved by adapted techniques for building and traversing these hierarchies. An extended set of heuristics is described that allows to prune the hierarchy. Oriented inflation of bounding volumes enables us to detect proximities with a minimum of extra cost. Eventually, the distance of the mesh faces is computed accurately, and constraints respond to the collisions

    Working With Incremental Spatial Data During Parallel (GPU) Computation

    Get PDF
    Central to many complex systems, spatial actors require an awareness of their local environment to enable behaviours such as communication and navigation. Complex system simulations represent this behaviour with Fixed Radius Near Neighbours (FRNN) search. This algorithm allows actors to store data at spatial locations and then query the data structure to find all data stored within a fixed radius of the search origin. The work within this thesis answers the question: What techniques can be used for improving the performance of FRNN searches during complex system simulations on Graphics Processing Units (GPUs)? It is generally agreed that Uniform Spatial Partitioning (USP) is the most suitable data structure for providing FRNN search on GPUs. However, due to the architectural complexities of GPUs, the performance is constrained such that FRNN search remains one of the most expensive common stages between complex systems models. Existing innovations to USP highlight a need to take advantage of recent GPU advances, reducing the levels of divergence and limiting redundant memory accesses as viable routes to improve the performance of FRNN search. This thesis addresses these with three separate optimisations that can be used simultaneously. Experiments have assessed the impact of optimisations to the general case of FRNN search found within complex system simulations and demonstrated their impact in practice when applied to full complex system models. Results presented show the performance of the construction and query stages of FRNN search can be improved by over 2x and 1.3x respectively. These improvements allow complex system simulations to be executed faster, enabling increases in scale and model complexity

    Efficient Generating And Processing Of Large-Scale Unstructured Meshes

    Get PDF
    Unstructured meshes are used in a variety of disciplines to represent simulations and experimental data. Scientists who want to increase accuracy of simulations by increasing resolution must also increase the size of the resulting dataset. However, generating and processing a extremely large unstructured meshes remains a barrier. Researchers have published many parallel Delaunay triangulation (DT) algorithms, often focusing on partitioning the initial mesh domain, so that each rectangular partition can be triangulated in parallel. However, the comproblems for this method is how to merge all triangulated partitions into a single domain-wide mesh or the significant cost for communication the sub-region borders. We devised a novel algorithm --Triangulation of Independent Partitions in Parallel (TIPP) to deal with very large DT problems without requiring inter-processor communication while still guaranteeing the Delaunay criteria. The core of the algorithm is to find a set of independent} partitions such that the circumcircles of triangles in one partition do not enclose any vertex in other partitions. For this reason, this set of independent partitions can be triangulated in parallel without affecting each other. The results of mesh generation is the large unstructured meshes including vertex index and vertex coordinate files which introduce a new challenge \-- locality. Partitioning unstructured meshes to improve locality is a key part of our own approach. Elements that were widely scattered in the original dataset are grouped together, speeding data access. For further improve unstructured mesh partitioning, we also described our new approach. Direct Load which mitigates the challenges of unstructured meshes by maximizing the proportion of useful data retrieved during each read from disk, which in turn reduces the total number of read operations, boosting performance
    corecore