13,159 research outputs found

    Developing efficient web-based GIS applications

    Get PDF
    There is an increase in the number of web-based GIS applications over the recent years. This paper describes different mapping technologies, database standards, and web application development standards that are relevant to the development of web-based GIS applications. Different mapping technologies for displaying geo-referenced data are available and can be used in different situations. This paper also explains why Oracle is the system of choice for geospatial applications that need to handle large amounts of data. Wireframing and design patterns have been shown to be useful in making GIS web applications efficient, scalable and usable, and should be an important part of every web-based GIS application. A range of different development technologies are available, and their use in different operating environments has been discussed here in some detail

    Multi-capacity bin packing with dependent items and its application to the packing of brokered workloads in virtualized environments

    Full text link
    Providing resource allocation with performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, in which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. Existing resource allocation solutions either assume that applications manage their data transfer between their virtualized resources, or that cloud providers manage their internal networking resources. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource allocation solutions that provides predictability guarantees in settings, in which neither application scheduling nor cloud provider resources can be managed/controlled by the broker. This paper addresses this problem, as we define the Network-Constrained Packing (NCP) problem of finding the optimal mapping of brokered resources to applications with guaranteed performance predictability. We prove that NCP is NP-hard, and we define two special instances of the problem, for which exact solutions can be found efficiently. We develop a greedy heuristic to solve the general instance of the NCP problem , and we evaluate its efficiency using simulations on various application workloads, and network models.This work was done while author was at Boston University. It was partially supported by NSF CISE awards #1430145, #1414119, #1239021 and #1012798. (1430145 - NSF CISE; 1414119 - NSF CISE; 1239021 - NSF CISE; 1012798 - NSF CISE

    Network-constrained packing of brokered workloads in virtualized environments

    Full text link
    Providing resource allocation with performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, in which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. Existing resource allocation solutions either assume that applications manage their data transfer between their virtualized resources, or that cloud providers manage their internal networking resources.With the increased prevalence of brokerage services in cloud platforms, there is a need for resource allocation solutions that provides predictability guarantees in settings, in which neither application scheduling nor cloud provider resources can be managed/controlled by the broker. This paper addresses this problem, as we define the Network-Constrained Packing (NCP)problem of finding the optimal mapping of brokered resources to applications with guaranteed performance predictability. We prove that NCP is NP-hard, and we define two special instances of the problem, for which exact solutions can be found efficiently. We develop a greedy heuristic to solve the general instance of the NCP problem, and we evaluate its efficiency using simulations on various application workloads, and network models.This work is supported by NSF CISE CNS Award #1347522, # 1239021, # 1012798

    Brain architecture: A design for natural computation

    Full text link
    Fifty years ago, John von Neumann compared the architecture of the brain with that of computers that he invented and which is still in use today. In those days, the organisation of computers was based on concepts of brain organisation. Here, we give an update on current results on the global organisation of neural systems. For neural systems, we outline how the spatial and topological architecture of neuronal and cortical networks facilitates robustness against failures, fast processing, and balanced network activation. Finally, we discuss mechanisms of self-organization for such architectures. After all, the organization of the brain might again inspire computer architecture
    • …
    corecore