2,359 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Design and Evaluation of a Hardware System for Online Signal Processing within Mobile Brain-Computer Interfaces

    Get PDF
    Brain-Computer Interfaces (BCIs) sind innovative Systeme, die eine direkte Kommunikation zwischen dem Gehirn und externen Geräten ermöglichen. Diese Schnittstellen haben sich zu einer transformativen Lösung nicht nur für Menschen mit neurologischen Verletzungen entwickelt, sondern auch für ein breiteres Spektrum von Menschen, das sowohl medizinische als auch nicht-medizinische Anwendungen umfasst. In der Vergangenheit hat die Herausforderung, dass neurologische Verletzungen nach einer anfänglichen Erholungsphase statisch bleiben, die Forscher dazu veranlasst, innovative Wege zu beschreiten. Seit den 1970er Jahren stehen BCIs an vorderster Front dieser Bemühungen. Mit den Fortschritten in der Forschung haben sich die BCI-Anwendungen erweitert und zeigen ein großes Potenzial für eine Vielzahl von Anwendungen, auch für weniger stark eingeschränkte (zum Beispiel im Kontext von Hörelektronik) sowie völlig gesunde Menschen (zum Beispiel in der Unterhaltungsindustrie). Die Zukunft der BCI-Forschung hängt jedoch auch von der Verfügbarkeit zuverlässiger BCI-Hardware ab, die den Einsatz in der realen Welt gewährleistet. Das im Rahmen dieser Arbeit konzipierte und implementierte CereBridge-System stellt einen bedeutenden Fortschritt in der Brain-Computer-Interface-Technologie dar, da es die gesamte Hardware zur Erfassung und Verarbeitung von EEG-Signalen in ein mobiles System integriert. Die Architektur der Verarbeitungshardware basiert auf einem FPGA mit einem ARM Cortex-M3 innerhalb eines heterogenen ICs, was Flexibilität und Effizienz bei der EEG-Signalverarbeitung gewährleistet. Der modulare Aufbau des Systems, bestehend aus drei einzelnen Boards, gewährleistet die Anpassbarkeit an unterschiedliche Anforderungen. Das komplette System wird an der Kopfhaut befestigt, kann autonom arbeiten, benötigt keine externe Interaktion und wiegt einschließlich der 16-Kanal-EEG-Sensoren nur ca. 56 g. Der Fokus liegt auf voller Mobilität. Das vorgeschlagene anpassbare Datenflusskonzept erleichtert die Untersuchung und nahtlose Integration von Algorithmen und erhöht die Flexibilität des Systems. Dies wird auch durch die Möglichkeit unterstrichen, verschiedene Algorithmen auf EEG-Daten anzuwenden, um unterschiedliche Anwendungsziele zu erreichen. High-Level Synthesis (HLS) wurde verwendet, um die Algorithmen auf das FPGA zu portieren, was den Algorithmenentwicklungsprozess beschleunigt und eine schnelle Implementierung von Algorithmusvarianten ermöglicht. Evaluierungen haben gezeigt, dass das CereBridge-System in der Lage ist, die gesamte Signalverarbeitungskette zu integrieren, die für verschiedene BCI-Anwendungen erforderlich ist. Darüber hinaus kann es mit einer Batterie von mehr als 31 Stunden Dauerbetrieb betrieben werden, was es zu einer praktikablen Lösung für mobile Langzeit-EEG-Aufzeichnungen und reale BCI-Studien macht. Im Vergleich zu bestehenden Forschungsplattformen bietet das CereBridge-System eine bisher unerreichte Leistungsfähigkeit und Ausstattung für ein mobiles BCI. Es erfüllt nicht nur die relevanten Anforderungen an ein mobiles BCI-System, sondern ebnet auch den Weg für eine schnelle Übertragung von Algorithmen aus dem Labor in reale Anwendungen. Im Wesentlichen liefert diese Arbeit einen umfassenden Entwurf für die Entwicklung und Implementierung eines hochmodernen mobilen EEG-basierten BCI-Systems und setzt damit einen neuen Standard für BCI-Hardware, die in der Praxis eingesetzt werden kann.Brain-Computer Interfaces (BCIs) are innovative systems that enable direct communication between the brain and external devices. These interfaces have emerged as a transformative solution not only for individuals with neurological injuries, but also for a broader range of individuals, encompassing both medical and non-medical applications. Historically, the challenge of neurological injury being static after an initial recovery phase has driven researchers to explore innovative avenues. Since the 1970s, BCIs have been at one forefront of these efforts. As research has progressed, BCI applications have expanded, showing potential in a wide range of applications, including those for less severely disabled (e.g. in the context of hearing aids) and completely healthy individuals (e.g. entertainment industry). However, the future of BCI research also depends on the availability of reliable BCI hardware to ensure real-world application. The CereBridge system designed and implemented in this work represents a significant leap forward in brain-computer interface technology by integrating all EEG signal acquisition and processing hardware into a mobile system. The processing hardware architecture is centered around an FPGA with an ARM Cortex-M3 within a heterogeneous IC, ensuring flexibility and efficiency in EEG signal processing. The modular design of the system, consisting of three individual boards, ensures adaptability to different requirements. With a focus on full mobility, the complete system is mounted on the scalp, can operate autonomously, requires no external interaction, and weighs approximately 56g, including 16 channel EEG sensors. The proposed customizable dataflow concept facilitates the exploration and seamless integration of algorithms, increasing the flexibility of the system. This is further underscored by the ability to apply different algorithms to recorded EEG data to meet different application goals. High-Level Synthesis (HLS) was used to port algorithms to the FPGA, accelerating the algorithm development process and facilitating rapid implementation of algorithm variants. Evaluations have shown that the CereBridge system is capable of integrating the complete signal processing chain required for various BCI applications. Furthermore, it can operate continuously for more than 31 hours with a 1800mAh battery, making it a viable solution for long-term mobile EEG recording and real-world BCI studies. Compared to existing research platforms, the CereBridge system offers unprecedented performance and features for a mobile BCI. It not only meets the relevant requirements for a mobile BCI system, but also paves the way for the rapid transition of algorithms from the laboratory to real-world applications. In essence, this work provides a comprehensive blueprint for the development and implementation of a state-of-the-art mobile EEG-based BCI system, setting a new benchmark in BCI hardware for real-world applicability

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Analytical Models and Artificial Intelligence for Open and Partially Disaggregated Optical Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    In-line quality control for Zero Defect Manufacturing: design, development and uncertainty analysis of vision-based instruments for dimensional measurements at different scales

    Get PDF
    Lo scopo di questo progetto di dottorato industriale finanziato attraverso una borsa di studio della Regione Marche è stato quello di sviluppare ricerca con potenziale impatto su un settore industriale, promuovere il coinvolgimento delle fabbriche e delle imprese locali nella ricerca e innovazione svolta in collaborazione con l'università e produrre ricerca in linea con le esigenze dell'ambiente industriale, non solo a livello regionale. Quindi, attraverso la collaborazione con una torneria locale (Zannini SpA) e una piccola azienda high-tech focalizzata sull'introduzione dell'innovazione meccatronica nel settore della tornitura (Z4Tec srl), e anche grazie a una collaborazione internazionale con l'Università di Anversa, abbiamo progettato e sviluppato nuovi strumenti per il controllo qualità in linea, basati su tecnologie senza contatto, in particolare tecnologie elettro-ottiche. Portando anche l'attenzione sull'importanza di prendere in considerazione l'incertezza, poiché è fondamentale nel processo decisionale basato sui dati che sono alla base di una strategia di Zero Defect Manufacturing. Infatti, la scarsa qualità delle misure può pregiudicare la qualità dei dati. In particolare, questo lavoro presenta due strumenti di misura che sono stati progettati e sviluppati con lo scopo di effettuare controllo qualità in linea di produzione e l’incertezza di misura di ogni strumento è stata analizzata in confronto ad altri strumenti presenti sul mercato. Nella parte finale di questo lavoro si è valutata l’incertezza di un profilometro a triangolazione di linea laser. Pertanto, la ricerca condotta in questa tesi può essere organizzata in due obiettivi principali: lo sviluppo di nuovi sistemi di misura dimensionale basati sulla visione da implementare in linea di produzione e l'analisi dell'incertezza di questi strumenti di misura. Per il primo obiettivo ci siamo concentrati su due tipi di misure dimensionali imposte dall'industria manifatturiera: macroscopiche (misure in mm) e microscopiche (misure in µm). Per le misure macroscopiche l'obiettivo era il controllo in linea della qualità dimensionale di pezzi torniti attraverso la profilometria ottica telecentrica. Il campione da ispezionare è stato posto tra l'illuminatore e l'obiettivo per ottenere la proiezione dell'ombra del campione. Le misure sono state eseguite mediante analisi grafica dell'immagine. Abbiamo discusso le disposizioni meccaniche mirate a ottimizzare le immagini acquisite e i problemi che eventuali disallineamenti meccanici dei componenti potrebbero introdurre nella qualità delle immagini. Per le misure microscopiche abbiamo progettato un sistema di misurazione della rugosità superficiale basato sulla visione retroilluminata, con l'obiettivo di determinare le condizioni ottimali di imaging utilizzando la modulation transfer function e l'uso di una electrically tunable lens. Un campione tornito (un cilindro) è posto di fronte a una telecamera ed è retroilluminato da una sorgente di luce collimata; tale configurazione ottica fornisce l'immagine del bordo del campione. Per testare la sensibilità del sistema di misura è stata utilizzata una serie di campioni di acciaio torniti con diverse rugosità superficiali. Per il secondo obiettivo, le tecniche di valutazione dell'incertezza di misura utilizzate in questo lavoro sono state un'analisi dell'incertezza statistica di tipo A e un'analisi Gage R&R. Nel caso del profilometro telecentrico, l'analisi è stata eseguita in confronto con altri dispositivi presenti sul mercato con un'analisi di tipo A e una Gage R&R. L'incertezza di misura del profilometro si è rivelata sufficiente per ottenere risultati nell'intervallo di tolleranza richiesto. Per il sistema di visione retroilluminato, il confronto dei risultati è stato effettuato con altri strumenti allo stato dell'arte, con un'analisi di Tipo A. Il confronto ha mostrato che le prestazioni dello strumento retroilluminato dipendono dai valori di rugosità superficiale considerati; mentre a valori maggiori di rugosità l'offset aumenta, per valori inferiori di rugosità i risultati sono compatibili con quelli dello strumento di riferimento (a stilo). Infine, sono state valutate la ripetibilità e la riproducibilità di un profilometro a triangolazione di linea laser, attraverso uno studio Gage R&R. Ogni punto di misura è stato ispezionato da tre operatori e l'insieme dei dati è stato elaborato con un'analisi dell'incertezza di Tipo A. Successivamente, uno studio Gage R&R ha contribuito a indagare la ripetibilità, la riproducibilità e la variabilità del sistema. Questa analisi ha dimostrato un'incertezza accettabile.The purpose of this industrial PhD project financed through a scholarship from the Regione Marche was to develop research with potential impact on an industrial sector, to promote the involvement of local factories and companies in research and innovation performed jointly with the university and to produce research in line with the needs of the industrial environment, not only at regional level. Hence, through collaborating with a local turning factory (Zannini SpA) and a small high-tech company focused on introducing mechatronic innovation in the turning sector (Z4Tec srl), and also thanks to an international collaboration with the University of Antwerp, we designed and developed new instruments for in-line quality control, based on non-contact technologies, specifically electro-optical technologies. While also bringing attention to the importance of taking uncertainty into consideration, since it is pivotal in data-based decision making which are at the base of a Zero Defect Manufacturing strategy. This means that poor quality of measurements can prejudice the quality of the data. In particular, this work presents two measurement instruments that were designed and developed for the purpose of in-line quality control and the uncertainty of each of the two instruments was evaluated and analyzed in comparison with instruments already present on the market. In the last part of this work, the uncertainty of a hand-held laser-line triangulation profilometer is estimated. Hence, the research conducted in this thesis can be organized in two main objectives: the development of new vision-based dimensional measurement systems to be implemented in production line and the uncertainty analysis of these measurement instruments. For the first objective we focused on two types of dimensional measurements imposed by the manufacturing industry: macroscopic (measuring dimensions in mm) and microscopic (measuring roughness in µm). For macroscopic measurements the target was the in-production dimensional quality control of turned parts through telecentric optical profilometry. The sample to be inspected was placed between illuminator and objective in order to obtain the projection of the shadow of the sample over a white background. Dimensional measurements were then performed by means of image processing over the image obtained. We discussed the mechanical arrangements targeted to optimize images acquired as well as the main issues that eventual mechanical misalignments of components might introduce in the quality of images. For microscopic measurements we designed a backlit vision-based surface roughness measurement system with a focus on smart behaviors such as determining the optimal imaging conditions using the modulation transfer function and the use of an electrically tunable lens. A turned sample (a cylinder) is placed in front of a camera and it is backlit by a collimated source of light; such optical configuration provides the image of the edge of the sample. A set of turned steel samples with different surface roughness was used to test the sensitivity of the measurement system. For the second objective, the measurement uncertainty evaluation techniques used in this work were a Type A statistical uncertainty analysis and a Gage R&R analysis. In the case of the telecentric profilometer, the analysis was performed in comparison with other on-the-market devices with a Type A analysis and a Gage R&R analysis. The measurement uncertainty of the profilometer proved to be sufficient to obtain results within the tolerance interval required. For the backlit vision system, the comparison of the results was made with other state-of-the-art instruments, with a Type A analysis. The comparison showed that the performance of the backlit instrument depends on the values of surface roughness considered; while at larger values of roughness the offset increases, the results are compatible with the ones of the reference instrument (stylus-based) at lower values of roughness. Lastly, the repeatability and reproducibility of a laser-line triangulation profilometer were assessed, through a Gage R&R study. Each measuring point was inspected by three different operators and the data set has been, at first, processed by a Type A uncertainty analysis. Then, a Gage R&R study helped investigate repeatability, reproducibility and the system variability. This analysis showed that the presented laser-line triangulation system has an acceptable uncertainty

    RF Wireless Power and Data Transfer : Experiment-driven Analysis and Waveform Design

    Get PDF
    The brisk deployment of the fifth generation (5G) mobile technology across the globe has accelerated the adoption of Internet of Things (IoT) networks. While 5G provides the necessary bandwidth and latency to connect the trillions of IoT sensors to the internet, the challenge of powering such a multitude of sensors with a replenishable energy source remains. Far-field radio frequency (RF) wireless power transfer (WPT) is a promising technology to address this issue. Conventionally, the RF WPT concepts have been deemed inadequate to deliver wireless power due to the undeniably huge over-the-air propagation losses. Nonetheless, the radical decline in the energy requirement of simple sensing and computing devices over the last few decades has rekindled the interest in RF WPT as a feasible solution for wireless power delivery to IoT sensors. The primary goal in any RF WPT system is to maximize the harvested direct current (DC) power from the minuscule incident RF power. As a result, optimizing the receiver power efficiency is pivotal for an RF WPT system. On similar lines, it is essential to minimize the power losses at the transmitter in order to achieve a sustainable and economically viable RF WPT system. In this regard, this thesis explores the system-level study of an RF WPT system using a digital radio transmitter for applications where alternative analog transmit circuits are impractical. A prototype test-bed comprising low-cost software-defined radio (SDR) transmitter and an off-the-shelf RF energy-harvesting (EH) receiver is developed to experimentally analyze the impact of clipping and nonlinear amplification at the digital radio transmitter on digital baseband waveform. The use of an SDR allows leveraging the test-bed for the research on RF simultaneous wireless information and power transfer (SWIPT); the true potential of this technology can be realized by utilizing the RF spectrum to transport data and power together. The experimental results indicate that a digital radio severely distorts high peak-to-average power ratio (PAPR) signals, thereby reducing their average output power and rendering them futile for RF WPT. On similar lines, another test-bed is developed to assess the impact of different waveforms, input impedance mismatch, incident RF power, and load on the receiver power efficiency of an RF WPT system. The experimental results provide the foundation and notion to develop a novel mathematical model for an RF EH receiver. The parametric model relates the harvested DC power to the power distribution of the envelope signal of the incident waveform, which is characterized by the amplitude, phase and frequency of the baseband waveform. The novel receiver model is independent of the receiver circuit’s matching network, rectifier configuration, number of diodes, load as well as input frequency. The efficacy of the model in accurately predicting the output DC power for any given power-level distribution is verified experimentally. Since the novel receiver model associates the output DC power to the parameters of the incident waveform, it is further leveraged to design optimal transmit wave-forms for RF WPT and SWIPT. The optimization problem reveals that a constant envelope signal with varying duty cycle is optimal for maximizing the harvested DC power. Consequently, a pulsed RF waveform is optimal for RF WPT, whereas a continuous phase modulated pulsed RF signal is suitable for RF SWIPT. The superior WPT performance of pulsed RF waveforms over multisine signals is demonstrated experimentally. Similarly, the pulsed phase-shift keying (PSK) signals exhibit superior receiver power efficiency than other communication signals. Nonetheless, varying the duty-cycle of pulsed PSK waveform leads to an efficiency—throughput trade-off in RF SWIPT. Finally, the SDR test-bed is used to evaluate the overall end-to-end power efficiency of different digital baseband waveforms through wireless measurements. The results indicate a 4-PSK modulated signal to be suitable for RF WPT considering the overall power efficiency of the system. The corresponding transmitter, channel and receiver power efficiencies are evaluated as well. The results demonstrate the transmitter power efficiency to be lower than the receiver power efficiency

    Computational Capabilities and Compiler Development for Neutral Atom Quantum Processors: Connecting Tool Developers and Hardware Experts

    Full text link
    Neutral Atom Quantum Computing (NAQC) emerges as a promising hardware platform primarily due to its long coherence times and scalability. Additionally, NAQC offers computational advantages encompassing potential long-range connectivity, native multi-qubit gate support, and the ability to physically rearrange qubits with high fidelity. However, for the successful operation of a NAQC processor, one additionally requires new software tools to translate high-level algorithmic descriptions into a hardware executable representation, taking maximal advantage of the hardware capabilities. Realizing new software tools requires a close connection between tool developers and hardware experts to ensure that the corresponding software tools obey the corresponding physical constraints. This work aims to provide a basis to establish this connection by investigating the broad spectrum of capabilities intrinsic to the NAQC platform and its implications on the compilation process. To this end, we first review the physical background of NAQC and derive how it affects the overall compilation process by formulating suitable constraints and figures of merit. We then provide a summary of the compilation process and discuss currently available software tools in this overview. Finally, we present selected case studies and employ the discussed figures of merit to evaluate the different capabilities of NAQC and compare them between two hardware setups.Comment: 32 pages, 13 figures, 2 table
    corecore