7,058 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Hierarchical Agent-based Adaptation for Self-Aware Embedded Computing Systems

    Get PDF
    Siirretty Doriast

    ParaFPGA 2011 : high performance computing with multiple FPGAs : design, methodology and applications

    Get PDF
    ParaFPGA 2011 marks the third mini-symposium devoted to the methodology, design and implementation of parallel applications using FPGAs. The focus of the contributions is mainly on organizing parallel applications in multiple FPGAs. This includes experiences from building a supercomputer with FPGAs, automatic and dedicated balancing of different tasks on heterogeneous FPGA constellations and designing optimal interconnects between collaborating FPGAs

    Self-Partial and Dynamic Reconfiguration Implementation for AES using FPGA

    Get PDF
    This paper addresses efficient hardware/software implementation approaches for the AES (Advanced Encryption Standard) algorithm and describes the design and performance testing algorithm for embedded system. Also, with the spread of reconfigurable hardware such as FPGAs (Field Programmable Gate Array) embedded cryptographic hardware became cost-effective. Nevertheless, it is worthy to note that nowadays, even hardwired cryptographic algorithms are not so safe. From another side, the self-reconfiguring platform is reported that enables an FPGA to dynamically reconfigure itself under the control of an embedded microprocessor. Hardware acceleration significantly increases the performance of embedded systems built on programmable logic. Allowing a FPGA-based MicroBlaze processor to self-select the coprocessors uses can help reduce area requirements and increase a system's versatility. The architecture proposed in this paper is an optimal hardware implementation algorithm and takes dynamic partially reconfigurable of FPGA. This implementation is good solution to preserve confidentiality and accessibility to the information in the numeric communication

    Exploiting partial reconfiguration through PCIe for a microphone array network emulator

    Get PDF
    The current Microelectromechanical Systems (MEMS) technology enables the deployment of relatively low-cost wireless sensor networks composed of MEMS microphone arrays for accurate sound source localization. However, the evaluation and the selection of the most accurate and power-efficient network’s topology are not trivial when considering dynamic MEMS microphone arrays. Although software simulators are usually considered, they consist of high-computational intensive tasks, which require hours to days to be completed. In this paper, we present an FPGA-based platform to emulate a network of microphone arrays. Our platform provides a controlled simulated acoustic environment, able to evaluate the impact of different network configurations such as the number of microphones per array, the network’s topology, or the used detection method. Data fusion techniques, combining the data collected by each node, are used in this platform. The platform is designed to exploit the FPGA’s partial reconfiguration feature to increase the flexibility of the network emulator as well as to increase performance thanks to the use of the PCI-express high-bandwidth interface. On the one hand, the network emulator presents a higher flexibility by partially reconfiguring the nodes’ architecture in runtime. On the other hand, a set of strategies and heuristics to properly use partial reconfiguration allows the acceleration of the emulation by exploiting the execution parallelism. Several experiments are presented to demonstrate some of the capabilities of our platform and the benefits of using partial reconfiguration

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    A Modular Platform for Adaptive Heterogeneous Many-Core Architectures

    Get PDF
    Multi-/many-core heterogeneous architectures are shaping current and upcoming generations of compute-centric platforms which are widely used starting from mobile and wearable devices to high-performance cloud computing servers. Heterogeneous many-core architectures sought to achieve an order of magnitude higher energy efficiency as well as computing performance scaling by replacing homogeneous and power-hungry general-purpose processors with multiple heterogeneous compute units supporting multiple core types and domain-specific accelerators. Drifting from homogeneous architectures to complex heterogeneous systems is heavily adopted by chip designers and the silicon industry for more than a decade. Recent silicon chips are based on a heterogeneous SoC which combines a scalable number of heterogeneous processing units from different types (e.g. CPU, GPU, custom accelerator). This shifting in computing paradigm is associated with several system-level design challenges related to the integration and communication between a highly scalable number of heterogeneous compute units as well as SoC peripherals and storage units. Moreover, the increasing design complexities make the production of heterogeneous SoC chips a monopoly for only big market players due to the increasing development and design costs. Accordingly, recent initiatives towards agile hardware development open-source tools and microarchitecture aim to democratize silicon chip production for academic and commercial usage. Agile hardware development aims to reduce development costs by providing an ecosystem for open-source hardware microarchitectures and hardware design processes. Therefore, heterogeneous many-core development and customization will be relatively less complex and less time-consuming than conventional design process methods. In order to provide a modular and agile many-core development approach, this dissertation proposes a development platform for heterogeneous and self-adaptive many-core architectures consisting of a scalable number of heterogeneous tiles that maintain design regularity features while supporting heterogeneity. The proposed platform hides the integration complexities by supporting modular tile architectures for general-purpose processing cores supporting multi-instruction set architectures (multi-ISAs) and custom hardware accelerators. By leveraging field-programmable-gate-arrays (FPGAs), the self-adaptive feature of the many-core platform can be achieved by using dynamic and partial reconfiguration (DPR) techniques. This dissertation realizes the proposed modular and adaptive heterogeneous many-core platform through three main contributions. The first contribution proposes and realizes a many-core architecture for heterogeneous ISAs. It provides a modular and reusable tilebased architecture for several heterogeneous ISAs based on open-source RISC-V ISA. The modular tile-based architecture features a configurable number of processing cores with different RISC-V ISAs and different memory hierarchies. To increase the level of heterogeneity to support the integration of custom hardware accelerators, a novel hybrid memory/accelerator tile architecture is developed and realized as the second contribution. The hybrid tile is a modular and reusable tile that can be configured at run-time to operate as a scratchpad shared memory between compute tiles or as an accelerator tile hosting a local hardware accelerator logic. The hybrid tile is designed and implemented to be seamlessly integrated into the proposed tile-based platform. The third contribution deals with the self-adaptation features by providing a reconfiguration management approach to internally control the DPR process through processing cores (RISC-V based). The internal reconfiguration process relies on a novel DPR controller targeting FPGA design flow for RISC-V-based SoC to change the types and functionalities of compute tiles at run-time
    • …
    corecore