3,446 research outputs found

    Real-Time Collision Imminent Steering Using One-Level Nonlinear Model Predictive Control

    Full text link
    Automotive active safety features are designed to complement or intervene a human driver's actions in safety critical situations. Existing active safety features, such as adaptive cruise control and lane keep assist, are able to exploit the ever growing sensor and computing capabilities of modern automobiles. An emerging feature, collision imminent steering, is designed to perform an evasive lane change to avoid collision if the vehicle believes collision cannot be avoided by braking alone. This is a challenging maneuver, as the expected highway setting is characterized by high speeds, narrow lane restrictions, and hard safety constraints. To perform such a maneuver, the vehicle may be required to operate at the nonlinear dynamics limits, necessitating advanced control strategies to enforce safety and drivability constraints. This dissertation presents a one-level nonlinear model predictive controller formulation to perform a collision imminent steering maneuver in a highway setting at high speeds, with direct consideration of safety criteria in the highway environment and the nonlinearities characteristic of such a potentially aggressive maneuver. The controller is cognizant of highway sizing constraints, vehicle handling capability and stability limits, and time latency when calculating the control action. In simulated testing, it is shown the controller can avoid collision by conducting a lane change in roughly half the distance required to avoid collision by braking alone. In preliminary vehicle testing, it is shown the control formulation is compatible with the existing perception pipeline, and prescribed control action can safely perform a lane change at low speed. Further, the controller must be suitable for real-time implementation and compatible with expected automotive control architecture. Collision imminent steering, and more broadly collision avoidance, control is a computationally challenging problem. At highway speeds, the required time for action is on the order of hundreds of milliseconds, requiring a control formulation capable of operating at tens of Hertz. To this extent, this dissertation investigates the computational expense of such a controller, and presents a framework for designing real-time compatible nonlinear model predictive controllers. Specifically, methods for numerically simulating the predicted vehicle response and response sensitivities are compared, their cross interaction with trajectory optimization strategy are considered, and the resulting mapping to a parallel computing hardware architecture is investigated. The framework systematically evaluates the underlying numerical optimization problem for bottlenecks, from which it provides alternative solutions strategies to achieve real-time performance. As applied to the baseline collision imminent steering controller, the procedure results in an approximate three order of magnitude reduction in compute wall time, supporting real-time performance and enabling preliminary testing on automotive grade hardware.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163063/1/jbwurts_1.pd

    Digital twin development for improved operation of batch process systems

    Get PDF

    Development of efficient algorithms for model predictive control of fast systems

    Get PDF
    Die nichtlineare modellprädiktive Regelung (NMPC) ist ein vielversprechender Regelungsalgorithmus, der auf der Echtzeitlüsung eines nichtlinearen dynamischen Optimie- rungsproblems basiert. Nichtlineare Modellgleichungen wie auch die Steuerungs- und Zustandsbeschränkungen werden als Gleichungs- bzw. Ungleichungsbeschränkungen des Optimalsteuerungsproblems behandelt. Jedoch wurde die NMPC wegen des recht hohen Rechenaufwandes bisher meist auf relativ langsame Prozesse angewendet. Daher bildet die Rechenzeit bei Anwendung der NMPC auf schnelle Prozesse einen gewissen Engpass wie z. B. bei mechanischen und/oder elektrischen Prozessen. In dieser Arbeit wird eine neue Lüsungsstrategie für dynamische Optimierungsprobleme vorgeschlagen, wie sie in NMPC auftreten, die auch auf sog. schnelle Systeme anwendbar ist. Diese Strategie kombiniert Mehrschieß -Verfahrens mit der Methode der Kollokation auf finiten Elementen. Mittels Mehrschieß -Verfahren wird das nichtlineare dynamische Optimierungsproblem in ein hochdimensionales statisches Optimierungsproblem (nonlinear program problem, NLP) überführt, wobei Diskretisierungs- und Parametrisierungstechniken zum Einsatz kommen. Um das NLP-Problem zu lüsen, müssen die Zustandswerte und ihre Gradienten am Ende jedes Diskretisierung-Intervalles berechnet werden. In dieser Arbeit wird die Methode der Kollokation auf finiten Elementen benutzt, um diese Aufgabe zu lüsen. Dadurch lassen sich die Zustandsgrüß en und ihre Gradienten am Ende jedes Diskretisierungs-Intervalls auch mit groß er Genauigkeit berechnen. Im Ergebnis künnen die Vorteile beider Methoden (Mehrschieß -Verfahren und Kollokations-Methoden) ausgenutzt werden und die Rechenzeit lässt sich deutlich reduzieren. Wegen des komplexen Optimierungsproblems ist es im Allgemeinen schwierig, eine Stabilitätsanalyse für das zugehürige NMPC durchzuführen. In dieser Arbeit wird eine neue Formulierung des Optimalsteuerungsproblems vorgeschlagen, durch die die Stabilität des NMPC gesichert werden kann. Diese Strategie besteht aus den folgenden drei Eigenschaften. Zunächst wird ein Hilfszustand über eine lineare Zustandsgleichung in das Optimierungsproblem eingeführt. Die Zustandsgleichungen werden durch Hilfszustände ergänzt, die man in Form von Ungleichungsnebenbedingungen einführt. Wenn die Hilfszustände stabil sind, lässt sich damit die Stabilität des Gesamtsystems sichern. Die Eigenwerte der Hilfszustände werden so gewählt, dass das Optimalsteuerungsproblem lüsbar ist. Dazu benutzt man die Eigenwerte als Optimierungsvariable. Damit lassen sich die Stabilitätseigenschaften in einem stationären Punkt des Systemmodells untersuchen. Leistungsfähigkeit und Effektivität des vorgeschlagenen Algorithmus werden an Hand von Fallstudien belegt. Die Bibliothek Numerische Algorithmus Group (NAG), Mark 8, wird eingesetzt, um die linearen und nichtlinearen Gleichungen, die aus der Kollokation resultieren, zu lüsen. Weiterhin wird zur Lüsung des NLP-Problems der Lüser IPOPT für C/C++- Umgebung eingesetzt. Insbesondere wird der vorgeschlagene Algorithmus zur Steuerung einer Verladebrücke im Labor des Institutes für Automatisierungs- und Systemtechnik angewendet.Nonlinear model predictive control (NMPC) has been considered as a promising control algorithm which is based on a real-time solution of a nonlinear dynamic optimization problem. Nonlinear model equations and controls as well as state restrictions are treated as equality and inequality constraints of the optimal control problem. However, NMPC has been applied mostly in relatively slow processes until now, due to its high computational expense. Therefore, computation time needed for the solution of NMPC leads to a bottleneck in its application to fast systems such as mechanical and/or electrical processes. In this dissertation, a new solution strategy to efficiently solve NMPC problems is proposed so that it can be applied to fast systems. This strategy combines the multiple shooting method with the collocation on finite elements method. The multiple shooting method is used for transforming the nonlinear optimal control problem into nonlinear program (NLP) problem using discretization and parametrization techniques. To solve this NLP problem the values of state variables and their gradients at the end of each shooting need to be computed. We use collocation on finite elements to carry out this task, thus, a high precision approximation of the state variables and their sensitivities in each shoot are achieved. As a result, the advantages of both the multiple shooting and the collocation method can be employed and therefore the computation efficiency can be considerably enhanced. Due to the nonlinear and complex optimal control problem formulation, in general, it is difficult to analyze the stability properties of NMPC systems. In this dissertation we propose a new formulation of the optimal control problem to ensure the stability of the NMPC problems. It consists the following three features. First, we introduce auxiliary states and linear state equations into the finite horizon dynamic optimization problem. Second, we enforce system states to be contracted with respect to the auxiliary state variables by adding inequality constraints. Thus, the stability features of the system states will conform to the stability properties of the auxiliary states, i.e. the system states will be stable, if the auxiliary states are stable. Third, the eigenvalues of the linear state equations introduced will be determined to stabilize the auxiliary states and at the same time make the optimal control problem feasible. This is achieved by considering the eigenvalues as optimization variables in the optimal control problem. Moreover, features of this formulation are analyzed at the stationary point of the system model. To show the effectiveness and performance of the proposed algorithm and the new optimal control problem formulation we present a set of NMPC case studies. We use the numerical algorithm group (NAG) library Mark 8 to solve numerically linear and nonlinear systems that resulted from the collocation on finite elements to compute the states and sensitivities, in addition, the interior point optimizer (IPOPT) and in C/C++ environment. Furthermore, to show more applicability, the proposed algorithm is applied to control a laboratory loading bridge

    Handling Uncertainties in Process Optimization

    Get PDF
    Esta tesis doctoral presenta el estudio de técnicas que permiten manejar las incertidumbres en la optimización de procesos, desde el punto de vista del comportamiento aleatorio de las variables y de los errores en los modelos utilizados en la optimización. Para el tratamiento de las variables inciertas, se presenta la aplicación de la Programación de dos Etapas y Optimización Probabilística a un proceso de hidrodesulfuración. Los resultados permiten asegurar factibilidad en la operación, independiente del valor que tome la variable aleatoria dentro de su distribución de probabilidad. Acerca del manejo de la incertidumbre derivada del conocimiento parcial del proceso, se ha estudiado el método de Optimización en Tiempo Real con adaptación de modificadores, proponiendo mejoras que permiten: (1) evitar infactibilidades en su evolución, (2) obtener el óptimo real del proceso sin necesidad de estimar sus gradientes y (3) identificar las limitaciones para su aplicación en sistemas dinámicos de horizonteDepartamento de Ingeniería de Sistemas y Automátic

    Continuous Biochemical Processing: Investigating Novel Strategies to Produce Sustainable Fuels and Pharmaceuticals

    Get PDF
    Biochemical processing methods have been targeted as one of the potential renewable strategies for producing commodities currently dominated by the petrochemical industry. To design biochemical systems with the ability to compete with petrochemical facilities, inroads are needed to transition from traditional batch methods to continuous methods. Recent advancements in the areas of process systems and biochemical engineering have provided the tools necessary to study and design these continuous biochemical systems to maximize productivity and substrate utilization while reducing capital and operating costs. The first goal of this thesis is to propose a novel strategy for the continuous biochemical production of pharmaceuticals. The structural complexity of most pharmaceutical compounds makes chemical synthesis a difficult option, facilitating the need for their biological production. To this end, a continuous, multi-feed bioreactor system composed of multiple independently controlled feeds for substrate(s) and media is proposed to freely manipulate the bioreactor dilution rate and substrate concentrations. The optimal feed flow rates are determined through the solution to an optimal control problem where the kinetic models describing the time-variant system states are used as constraints. This new bioreactor paradigm is exemplified through the batch and continuous cultivation of β-carotene, a representative product of the mevalonate pathway, using Saccharomyces cerevisiae strain mutant SM14. The second goal of this thesis is to design continuous, biochemical processes capable of economically producing alternative liquid fuels. The large-scale, continuous production of ethanol via consolidated bioprocessing (CBP) is examined. Optimal process topologies for the CBP technology selected from a superstructure considering multiple biomass feeds, chosen from those available across the United States, and multiple prospective pretreatment technologies. Similarly, the production of butanol via acetone-butanol-ethanol (ABE) fermentation is explored using process intensification to improve process productivity and profitability. To overcome the inhibitory nature of the butanol product, the multi-feed bioreactor paradigm developed for pharmaceutical production is utilized with in situ gas stripping to simultaneously provide dilution effects and selectively remove the volatile ABE components. Optimal control and process synthesis techniques are utilized to determine the benefits of gas stripping and design a butanol production process guaranteed to be profitable

    Control Theory in Engineering

    Get PDF
    The subject matter of this book ranges from new control design methods to control theory applications in electrical and mechanical engineering and computers. The book covers certain aspects of control theory, including new methodologies, techniques, and applications. It promotes control theory in practical applications of these engineering domains and shows the way to disseminate researchers’ contributions in the field. This project presents applications that improve the properties and performance of control systems in analysis and design using a higher technical level of scientific attainment. The authors have included worked examples and case studies resulting from their research in the field. Readers will benefit from new solutions and answers to questions related to the emerging realm of control theory in engineering applications and its implementation

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

    Economic Model Predictive Control for Spray Drying Plants

    Get PDF

    Integration of process design and control: A review

    Get PDF
    There is a large variety of methods in literature for process design and control, which can be classified into two main categories. The methods in the first category have a sequential approach in which, the control system is designed, only after the details of process design are decided. However, when process design is fixed, there is little room left for improving the control performance. Recognizing the interactions between process design and control, the methods in the second category integrate some control aspects into process design. With the aim of providing an exploration map and identifying the potential areas of further contributions, this paper presents a thematic review of the methods for integration of process design and control. The evolution paths of these methods are described and the advantages and disadvantages of each method are explained. The paper concludes with suggestions for future research activities
    corecore