968 research outputs found

    Dynamical Systems; Proceedings of an IIASA Workshop, Sopron, Hungary, September 9-13, 1985

    Get PDF
    The investigation of special topics in systems dynamics -- uncertain dynamic processes, viability theory, nonlinear dynamics in models for biomathematics, inverse problems in control systems theory -- has become a major issue at the System and Decision Sciences Research Program of IIASA. The above topics actually reflect two different perspectives in the investigation of dynamic processes. The first, motivated by control theory, is concerned with the properties of dynamic systems that are stable under variations in the systems' parameters. This allows us to specify classes of dynamic systems for which it is possible to construct and control a whole "tube" of trajectories assigned to a system with uncertain parameters and to resolve some inverse problems of control theory within numerically stable solution schemes. The second perspective is to investigate generic properties of dynamic systems that are due to nonlinearity (as bifurcations theory, chaotic behavior, stability properties, and related problems in the qualitative theory of differential systems). Special stress is given to the applications of nonlinear dynamic systems theory to biomathematics and ecology. The proceedings of a workshop on the "Mathematics of Dynamic Processes", dealing with these topics is presented in this volume

    Effect of population size in a Prey-Predator model

    Get PDF
    We consider a stochastic version of the basic predator-prey differential equation model. The model, which contains a parameter \omega which represents the number of individuals for one unit of prey -- If x denotes the quantity of prey in the differential equation model x = 1 means that there are \omega individuals in the discontinuous one -- is derived from the classical birth and death process. It is shown by the mean of simulations and explained by a mathematical analysis based on results in singular perturbation theory (the so called theory of Canards) that qualitative properties of the model like persistence or extinction are dramatically sensitive to \omega. For instance, in our example, if \omega = 107 we have extinction and if \omega = 108 we have persistence. This means that we must be very cautious when we use continuous variables in place of jump processes in dynamic population modeling even when we use stochastic differential equations in place of deterministic ones

    STOCHASTIC DELAY DIFFERENTIAL EQUATIONS WITH APPLICATIONS IN ECOLOGY AND EPIDEMICS

    Get PDF
    Mathematical modeling with delay differential equations (DDEs) is widely used for analysis and predictions in various areas of life sciences, such as population dynamics, epidemiology, immunology, physiology, and neural networks. The memory or time-delays, in these models, are related to the duration of certain hidden processes like the stages of the life cycle, the time between infection of a cell and the production of new viruses, the duration of the infectious period, the immune period, and so on. In ordinary differential equations (ODEs), the unknown state and its derivatives are evaluated at the same time instant. In DDEs, however, the evolution of the system at a certain time instant depends on the past history/memory. Introduction of such time-delays in a differential model significantly improves the dynamics of the model and enriches the complexity of the system. Moreover, natural phenomena counter an environmental noise and usually do not follow deterministic laws strictly but oscillate randomly about some average values, so that the population density never attains a fixed value with the advancement of time. Accordingly, stochastic delay differential equations (SDDEs) models play a prominent role in many application areas including biology, epidemiology and population dynamics, mostly because they can offer a more sophisticated insight through physical phenomena than their deterministic counterparts do. The SDDEs can be regarded as a generalization of stochastic differential equations (SDEs) and DDEs.This dissertation, consists of eight Chapters, is concerned with qualitative and quantitative features of deterministic and stochastic delay differential equations with applications in ecology and epidemics. The local and global stabilities of the steady states and Hopf bifurcations with respect of interesting parameters of such models are investigated. The impact of incorporating time-delays and random noise in such class of differential equations for different types of predator-prey systems and infectious diseases is studied. Numerical simulations, using suitable and reliable numerical schemes, are provided to show the effectiveness of the obtained theoretical results.Chapter 1 provides a brief overview about the topic and shows significance of the study. Chapter 2, is devoted to investigate the qualitative behaviours (through local and global stability of the steady states) of DDEs with predator-prey systems in case of hunting cooperation on predators. Chapter 3 deals with the dynamics of DDEs, of multiple time-delays, of two-prey one-predator system, where the growth of both preys populations subject to Allee effects, with a direct competition between the two-prey species having a common predator. A Lyapunov functional is deducted to investigate the global stability of positive interior equilibrium. Chapter 4, studies the dynamics of stochastic DDEs for predator-prey system with hunting cooperation in predators. Existence and uniqueness of global positive solution and stochastically ultimate boundedness are investigated. Some sufficient conditions for persistence and extinction, using Lyapunov functional, are obtained. Chapter 5 is devoted to investigate Stochastic DDEs of three-species predator prey system with cooperation among prey species. Sufficient conditions of existence and uniqueness of an ergodic stationary distribution of the positive solution to the model are established, by constructing a suitable Lyapunov functional. Chapter 6 deals with stochastic epidemic SIRC model with time-delay for spread of COVID-19 among population. The basic reproduction number ℛs0 for the stochastic model which is smaller than ℛ0 of the corresponding deterministic model is deduced. Sufficient conditions that guarantee the existence of a unique ergodic stationary distribution, using the stochastic Lyapunov functional, and conditions for the extinction of the disease are obtained. In Chapter 7, some numerical schemes for SDDEs are discussed. Convergence and consistency of such schemes are investigated. Chapter 8 summaries the main finding and future directions of research. The main findings, theoretically and numerically, show that time-delays and random noise have a significant impact in the dynamics of ecological and biological systems. They also have an important role in ecological balance and environmental stability of living organisms. A small scale of white noise can promote the survival of population; While large noises can lead to extinction of the population, this would not happen in the deterministic systems without noises. Also, white noise plays an important part in controlling the spread of the disease; When the white noise is relatively large, the infectious diseases will become extinct; Re-infection and periodic outbreaks can also occur due to the time-delay in the transmission terms

    Controllability of an eco-epidemiological system with disease transmission delay: A theoretical study

    Get PDF
    This paper deals with the qualitative analysis of a disease transmission delay induced prey preda-tor system in which disease spreads among the predator species only. The growth of the preda-tors’ susceptible and infected subpopulations is assumed as modified Leslie–Gower type. Suffi-cient conditions for the persistence, permanence, existence and stability of equilibrium points are obtained. Global asymptotic stability of the system is investigated around the coexisting equilib-rium using a geometric approach. The existence of Hopf bifurcation phenomenon is also exam-ined with respect to some important parameters of the system. The criterion for disease a trans-mission delay the induced Hopf bifurcation phenomenon is obtained and subsequently, we use a normal form method and the center manifold theorem to examine the nature of the Hopf bifurca-tion. It is clearly observed that competition among predators can drive the system to a stable from an unstable state. Also the infection and competition among predator population enhance the availability of prey for harvesting when their values are high. Finally, some numerical simu-lations are carried out to illustrate the analytical results

    Time Delays and Pollution in an Open Access Fishery

    Get PDF
    We analyze the impacts of pollution on fishery sectorusing a dynamical system approach. The proposedmodel presupposes that the economic developmentcauses emissions that either remediate or accumulatein the oceans. The model possesses a block structurewhere the solutions of the rate equations for thepollutant and the economic activity act as an input forthe biomass and effort equation. We also account fordistributed delay effects in both the pollution level andthe economic activity level in our modeling framework.The weight functions in the delay terms are expressedin terms of exponentially decaying functions, which inturn enable us to convert the modeling framework to ahigher‐order autonomous dynamical system by meansof a linear chain trick. When both the typical delaytime for the economic activity and the typical delaytime for the pollution level are much smaller than thebiomass time scale, the governing system is analyzedby means of the theory for singularly perturbeddynamical systems. Contrary to what is found forpopulation dynamical systems with absolute delays, wereadily find that the impact of the distributed time lags is negligible in the long‐run dynamics in this time‐scaleseparation regime.publishedVersio

    Deterministic continutation of stochastic metastable equilibria via Lyapunov equations and ellipsoids

    Full text link
    Numerical continuation methods for deterministic dynamical systems have been one of the most successful tools in applied dynamical systems theory. Continuation techniques have been employed in all branches of the natural sciences as well as in engineering to analyze ordinary, partial and delay differential equations. Here we show that the deterministic continuation algorithm for equilibrium points can be extended to track information about metastable equilibrium points of stochastic differential equations (SDEs). We stress that we do not develop a new technical tool but that we combine results and methods from probability theory, dynamical systems, numerical analysis, optimization and control theory into an algorithm that augments classical equilibrium continuation methods. In particular, we use ellipsoids defining regions of high concentration of sample paths. It is shown that these ellipsoids and the distances between them can be efficiently calculated using iterative methods that take advantage of the numerical continuation framework. We apply our method to a bistable neural competition model and a classical predator-prey system. Furthermore, we show how global assumptions on the flow can be incorporated - if they are available - by relating numerical continuation, Kramers' formula and Rayleigh iteration.Comment: 29 pages, 7 figures [Fig.7 reduced in quality due to arXiv size restrictions]; v2 - added Section 9 on Kramers' formula, additional computations, corrected typos, improved explanation
    corecore