923 research outputs found

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities

    Neural Network Model-Based Control for Manipulator: An Autoencoder Perspective

    Get PDF
    Recently, neural network model-based control has received wide interests in kinematics control of manipulators. To enhance learning ability of neural network models, the autoencoder method is used as a powerful tool to achieve deep learning and has gained success in recent years. However, the performance of existing autoencoder approaches for manipulator control may be still largely dependent on the quality of data, and for extreme cases with noisy data it may even fail. How to incorporate the model knowledge into the autoencoder controller design with an aim to increase the robustness and reliability remains a challenging problem. In this work, a sparse autoencoder controller for kinematic control of manipulators with weights obtained directly from the robot model rather than training data is proposed for the first time. By encoding and decoding the control target though a new dynamic recurrent neural network architecture, the control input can be solved through a new sparse optimization formulation. In this work, input saturation, which holds for almost all practical systems but usually is ignored for analysis simplicity, is also considered in the controller construction. Theoretical analysis and extensive simulations demonstrate that the proposed sparse autoencoder controller with input saturation can make the end-effector of the manipulator system track the desired path efficiently. Further performance comparison and evaluation against the additive noise and parameter uncertainty substantiate robustness of the proposed sparse autoencoder manipulator controller

    The dynamic control of robotic manipulators in space

    Get PDF
    Described briefly is the work done during the first half year of a three-year study on dynamic control of robotic manipulators in space. The research focused on issues for advanced control of space manipulators including practical issues and new applications for the Virtual Manipulator. In addition, the development of simulations and graphics software for space manipulators, begun during the first NASA proposal in the area, has continued. The fabrication of the Vehicle Emulator System (VES) is completed and control algorithms are in process of development

    Robust Cooperative Manipulation without Force/Torque Measurements: Control Design and Experiments

    Full text link
    This paper presents two novel control methodologies for the cooperative manipulation of an object by N robotic agents. Firstly, we design an adaptive control protocol which employs quaternion feedback for the object orientation to avoid potential representation singularities. Secondly, we propose a control protocol that guarantees predefined transient and steady-state performance for the object trajectory. Both methodologies are decentralized, since the agents calculate their own signals without communicating with each other, as well as robust to external disturbances and model uncertainties. Moreover, we consider that the grasping points are rigid, and avoid the need for force/torque measurements. Load distribution is also included via a grasp matrix pseudo-inverse to account for potential differences in the agents' power capabilities. Finally, simulation and experimental results with two robotic arms verify the theoretical findings

    Evolutionary Computation Based Real-time Robot Arm Path-planning Using Beetle Antennae Search

    Get PDF

    Control Techniques for Robot Manipulator Systems with Modeling Uncertainties

    Get PDF
    This dissertation describes the design and implementation of various nonlinear control strategies for robot manipulators whose dynamic or kinematic models are uncertain. Chapter 2 describes the development of an adaptive task-space tracking controller for robot manipulators with uncertainty in the kinematic and dynamic models. The controller is developed based on the unit quaternion representation so that singularities associated with the otherwise commonly used three parameter representations are avoided. Experimental results for a planar application of the Barrett whole arm manipulator (WAM) are provided to illustrate the performance of the developed adaptive controller. The controller developed in Chapter 2 requires the assumption that the manipulator models are linearly parameterizable. However there might be scenarios where the structure of the manipulator dynamic model itself is unknown due to difficulty in modeling. One such example is the continuum or hyper-redundant robot manipulator. These manipulators do not have rigid joints, hence, they are difficult to model and this leads to significant challenges in developing high-performance control algorithms. In Chapter 3, a joint level controller for continuum robots is described which utilizes a neural network feedforward component to compensate for dynamic uncertainties. Experimental results are provided to illustrate that the addition of the neural network feedforward component to the controller provides improved tracking performance. While Chapter\u27s 2 and 3 described two different joint controllers for robot manipulators, in Chapter 4 a controller is developed for the specific task of whole arm grasping using a kinematically redundant robot manipulator. The whole arm grasping control problem is broken down into two steps; first, a kinematic level path planner is designed which facilitates the encoding of both the end-effector position as well as the manipulators self-motion positioning information as a desired trajectory for the manipulator joints. Then, the controller described in Chapter 3, which provides asymptotic tracking of the encoded desired joint trajectory in the presence of dynamic uncertainties is utilized. Experimental results using the Barrett Whole Arm Manipulator are presented to demonstrate the validity of the approach

    Model-based recurrent neural network for redundancy resolution of manipulator with remote centre of motion constraints

    Get PDF
    Redundancy resolution is a critical issue to achieve accurate kinematic control for manipulators. End-effectors of manipulators can track desired paths well with suitable resolved joint variables. In some manipulation applications such as selecting insertion paths to thrill through a set of points, it requires the distal link of a manipulator to translate along such fixed point and then perform manipulation tasks. The point is known as remote centre of motion (RCM) to constrain motion planning and kinematic control of manipulators. Together with its end-effector finishing path tracking tasks, the redundancy resolution of a manipulators has to maintain RCM to produce reliable resolved joint angles. However, current existing redundancy resolution schemes on manipulators based on recurrent neural networks (RNNs) mainly are focusing on unrestricted motion without RCM constraints considered. In this paper, an RNN-based approach is proposed to solve the redundancy resolution issue with RCM constraints, developing a new general dynamic optimisation formulation containing the RCM constraints. Theoretical analysis shows the theoretical derivation and convergence of the proposed RNN for redundancy resolution of manipulators with RCM constraints. Simulation results further demonstrate the efficiency of the proposed method in end-effector path tracking control under RCM constraints based on an industrial redundant manipulator system

    Simultaneous identification, tracking control and disturbance rejection of uncertain nonlinear dynamics systems: A unified neural approach

    Get PDF
    Previous works of traditional zeroing neural networks (or termed Zhang neural networks, ZNN) show great success for solving specific time-variant problems of known systems in an ideal environment. However, it is still a challenging issue for the ZNN to effectively solve time-variant problems for uncertain systems without the prior knowledge. Simultaneously, the involvement of external disturbances in the neural network model makes it even hard for time-variant problem solving due to the intensively computational burden and low accuracy. In this paper, a unified neural approach of simultaneous identification, tracking control and disturbance rejection in the framework of the ZNN is proposed to address the time-variant tracking control of uncertain nonlinear dynamics systems (UNDS). The neural network model derived by the proposed approach captures hidden relations between inputs and outputs of the UNDS. The proposed model shows outstanding tracking performance even under the influences of uncertainties and disturbances. Then, the continuous-time model is discretized via Euler forward formula (EFF). The corresponding discrete algorithm and block diagram are also presented for the convenience of implementation. Theoretical analyses on the convergence property and discretization accuracy are presented to verify the performance of the neural network model. Finally, numerical studies, robot applications, performance comparisons and tests demonstrate the effectiveness and advantages of the proposed neural network model for the time-variant tracking control of UNDS

    Tracking control of redundant mobile manipulator: An RNN based metaheuristic approach

    Get PDF
    In this paper, we propose a topology of Recurrent Neural Network (RNN) based on a metaheuristic optimization algorithm for the tracking control of mobile-manipulator while enforcing nonholonomic constraints. Traditional approaches for tracking control of mobile robots usually require the computation of Jacobian-inverse or linearization of its mathematical model. The proposed algorithm uses a nature-inspired optimization approach to directly solve the nonlinear optimization problem without any further transformation. First, we formulate the tracking control as a constrained optimization problem. The optimization problem is formulated on position-level to avoid the computationally expensive Jacobian-inversion. The nonholonomic limitation is ensured by adding equality constraints to the formulated optimization problem. We then present the Beetle Antennae Olfactory Recurrent Neural Network (BAORNN) algorithm to solve the optimization problem efficiently using very few mathematical operations. We present a theoretical analysis of the proposed algorithm and show that its computational cost is linear with respect to the degree of freedoms (DOFs), i.e., O(m). Additionally, we also prove its stability and convergence. Extensive simulation results are prepared using a simulated model of IIWA14, a 7-DOF industrial-manipulator, mounted on a differentially driven cart. Comparison results with particle swarm optimization (PSO) algorithm are also presented to prove the accuracy and numerical efficiency of the proposed controller. The results demonstrate that the proposed algorithm is several times (around 75 in the worst case) faster in execution as compared to PSO, and suitable for real-time implementation. The tracking results for three different trajectories; circular, rectangular, and rhodonea paths are presented
    • …
    corecore