2,288 research outputs found

    Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review

    Get PDF
    With the privatization and intense competition that characterize the volatile energy sector, the gas turbine industry currently faces new challenges of increasing operational flexibility, reducing operating costs, improving reliability and availability while mitigating the environmental impact. In this complex, changing sector, the gas turbine community could address a set of these challenges by further development of high fidelity, more accurate and computationally efficient engine health assessment, diagnostic and prognostic systems. Recent studies have shown that engine gas-path performance monitoring still remains the cornerstone for making informed decisions in operation and maintenance of gas turbines. This paper offers a systematic review of recently developed engine performance monitoring, diagnostic and prognostic techniques. The inception of performance monitoring and its evolution over time, techniques used to establish a high-quality dataset using engine model performance adaptation, and effects of computationally intelligent techniques on promoting the implementation of engine fault diagnosis are reviewed. Moreover, recent developments in prognostics techniques designed to enhance the maintenance decision-making scheme and main causes of gas turbine performance deterioration are discussed to facilitate the fault identification module. The article aims to organize, evaluate and identify patterns and trends in the literature as well as recognize research gaps and recommend new research areas in the field of gas turbine performance-based monitoring. The presented insightful concepts provide experts, students or novice researchers and decision-makers working in the area of gas turbine engines with the state of the art for performance-based condition monitoring

    Machine-learning-based condition assessment of gas turbine: a review

    Get PDF
    Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machinelearning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment.This research was funded by Siemens Energy.Peer ReviewedPostprint (published version

    Gas Turbine Condition Monitoring and Diagnostics

    Get PDF

    Exploring Prognostic and Diagnostic Techniques for Jet Engine Health Monitoring: A Review of Degradation Mechanisms and Advanced Prediction Strategies

    Get PDF
    Maintenance is crucial for aircraft engines because of the demanding conditions to which they are exposed during operation. A proper maintenance plan is essential for ensuring safe flights and prolonging the life of the engines. It also plays a major role in managing costs for aeronautical companies. Various forms of degradation can affect different engine components. To optimize cost management, modern maintenance plans utilize diagnostic and prognostic techniques, such as Engine Health Monitoring (EHM), which assesses the health of the engine based on monitored parameters. In recent years, various EHM systems have been developed utilizing computational techniques. These algorithms are often enhanced by utilizing data reduction and noise filtering tools, which help to minimize computational time and efforts, and to improve performance by reducing noise from sensor data. This paper discusses the various mechanisms that lead to the degradation of aircraft engine components and the impact on engine performance. Additionally, it provides an overview of the most commonly used data reduction and diagnostic and prognostic techniques

    Gas Turbine Diagnostics

    Get PDF

    Space shuttle main engine fault detection using neural networks

    Get PDF
    A method for on-line Space Shuttle Main Engine (SSME) anomaly detection and fault typing using a feedback neural network is described. The method involves the computation of features representing time-variance of SSME sensor parameters, using historical test case data. The network is trained, using backpropagation, to recognize a set of fault cases. The network is then able to diagnose new fault cases correctly. An essential element of the training technique is the inclusion of randomly generated data along with the real data, in order to span the entire input space of potential non-nominal data

    Neural Networks for Gas Turbine Diagnosis

    Get PDF
    The present chapter addresses the problems of gas turbine gas path diagnostics solved using artificial neural networks. As a very complex and expensive mechanical system, a gas turbine should be effectively monitored and diagnosed. Being universal and powerful approximation and classification techniques, neural networks have become widespread in gas turbine health monitoring over the past few years. Applications of such networks as a multilayer perceptron, radial basis network, probabilistic neural network, and support vector network were reported. However, there is a lack of manuals that summarize neural network applications for gas turbine diagnosis

    Fault detection, identification and accommodation techniques for unmanned airborne vehicles

    Get PDF
    Unmanned Airborne Vehicles (UAV) are assuming prominent roles in both the commercial and military aerospace industries. The promise of reduced costs and reduced risk to human life is one of their major attractions, however these low-cost systems are yet to gain acceptance as a safe alternate to manned solutions. The absence of a thinking, observing, reacting and decision making pilot reduces the UAVs capability of managing adverse situations such as faults and failures. This paper presents a review of techniques that can be used to track the system health onboard a UAV. The review is based on a year long literature review aimed at identifying approaches suitable for combating the low reliability and high attrition rates of today’s UAV. This research primarily focuses on real-time, onboard implementations for generating accurate estimations of aircraft health for fault accommodation and mission management (change of mission objectives due to deterioration in aircraft health). The major task of such systems is the process of detection, identification and accommodation of faults and failures (FDIA). A number of approaches exist, of which model-based techniques show particular promise. Model-based approaches use analytical redundancy to generate residuals for the aircraft parameters that can be used to indicate the occurrence of a fault or failure. Actions such as switching between redundant components or modifying control laws can then be taken to accommodate the fault. The paper further describes recent work in evaluating neural-network approaches to sensor failure detection and identification (SFDI). The results of simulations with a variety of sensor failures, based on a Matlab non-linear aircraft model are presented and discussed. Suggestions for improvements are made based on the limitations of this neural network approach with the aim of including a broader range of failures, while still maintaining an accurate model in the presence of these failures

    Aircraft Exhaust Gas Temperature Value Mining with Rough Set Method

    Get PDF
    Aircrafts are one of the most important means of transportation today. For aircrafts to be able to serve safely, their maintenance must be done in a timely and complete manner. In addition to regular maintenance, it may appear suddenly; there is also irregular maintenance performed in cases such as lightning strikes, bird strikes, and hard landings. Engine failures and maintenance has great importance in aircraft maintenance. Using the data recorded during the flight by flight data recorder, the engine health condition is monitored and the necessary maintenance procedures are carried out. In this study, the exhaust gas temperature was estimated using various data mining algorithms. Because exhaust gas temperature is one of the important parameters used to monitor the aircraft engine health condition. The obtained mining results show the Random Forest Algorithm has best estimation performance. With mining of exhaust gas temperature value, faults can be detected before costly maintenance and accidents. So preventive maintenance methods will be applied, aircraft engines will remain healthy, a significant reduction in the maintenance cost of the operator will be achieved, as well as flight safety and environmental protection
    • …
    corecore