8 research outputs found

    Autonomous Optimization of Swimming Gait in a Fish Robot With Multiple Onboard Sensors

    Get PDF
    Autonomous gait optimization is an essential survival ability for mobile robots. However, it remains a challenging task for underwater robots. This paper addresses this problem for the locomotion of a bio-inspired robotic fish and aims at identifying fast swimming gait autonomously by the robot. Our approach for learning locomotion controllers mainly uses three components: 1) a biological concept of central pattern generator to obtain specific gaits; 2) an onboard sensory processing center to discover the environment and to evaluate the swimming gait; and 3) an evolutionary algorithm referred to as particle swarm optimization. A key aspect of our approach is the swimming gait of the robot is optimized autonomously, equivalent to that the robot is able to navigate and evaluate its swimming gait in the environment by the onboard sensors, and simultaneously run a built-in evolutionary algorithm to optimize its locomotion all by itself. Forward speed optimization experiments conducted on the robotic fish demonstrate the effectiveness of the developed autonomous optimization system. The latest results show that our robotic fish attained a maximum swimming speed of 1.011 BL/s (40.42 cm/s) through autonomous gait optimization, faster than any of the robot's previously recorded speeds

    Design and Control of a Single-Motor-Actuated Robotic Fish Capable of Fast Swimming and Maneuverability

    Full text link

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    The biomechanics of human locomotion

    Get PDF
    Includes bibliographical references. The thesis on CD-ROM includes Animate, GaitBib, GaitBook and GaitLab, four quick time movies which focus on the functional understanding of human gait. The CD-ROM is available at the Health Sciences Library
    corecore