827 research outputs found

    Intelligent controllers for velocity tracking of two wheeled inverted pendulum mobile robot

    Get PDF
    Velocity tracking is one of the important objectives of vehicle, machines and mobile robots. A two wheeled inverted pendulum (TWIP) is a class of mobile robot that is open loop unstable with high nonlinearities which makes it difficult to control its velocity because of its nature of pitch falling if left unattended. In this work, three soft computing techniques were proposed to track a desired velocity of the TWIP. Fuzzy Logic Control (FLC), Neural Network Inverse Model control (NN) and an Adaptive Neuro-Fuzzy Inference System (ANFIS) were designed and simulated on the TWIP model. All the three controllers have shown practically good performance in tracking the desired speed and keeping the robot in upright position and ANFIS has shown slightly better performance than FLC, while NN consumes more energy

    Balancing a Segway robot using LQR controller based on genetic and bacteria foraging optimization algorithms

    Get PDF
    A two-wheeled single seat Segway robot is a special kind of wheeled mobile robot, using it as a human transporter system needs applying a robust control system to overcome its inherent unstable problem. The mathematical model of the system dynamics is derived and then state space formulation for the system is presented to enable design state feedback controller scheme. In this research, an optimal control system based on linear quadratic regulator (LQR) technique is proposed to stabilize the mobile robot. The LQR controller is designed to control the position and yaw rotation of the two-wheeled vehicle. The proposed balancing robot system is validated by simulating the LQR using Matlab software. Two tuning methods, genetic algorithm (GA) and bacteria foraging optimization algorithm (BFOA) are used to obtain optimal values for controller parameters. A comparison between the performance of both controllers GA-LQR and BFO-LQR is achieved based on the standard control criteria which includes rise time, maximum overshoot, settling time and control input of the system. Simulation results suggest that the BFOA-LQR controller can be adopted to balance the Segway robot with minimal overshoot and oscillation frequency

    Semi-Adaptive Control Systems on Self-Balancing Robot using Artificial Neural Networks

    Get PDF
    A self-balancing type of robot works on the principle of maintaining the balance of the load's position to remains in the center. As a consequence of this principle, the driver can go forward reverse the vehicle by leaning in a particular direction. One of the factors affecting the control model is the weight of the driver. A control system that has been designed will not be able to balance the system if the driver using the vehicle exceeds or less than the predetermined weight value. The main objective of the study is to develop a semi-adaptive control system by implementing an Artificial Neural Network (ANN) algorithm that can estimate the driver's weight and use this information to reset the gain used in the control system. The experimental results show that the Artificial Neural Network can be used to estimate the weight of the driver's body by using 50-ms-duration of tilt sensor data to categorize into three defined classes that have been set. The ANN algorithm provides a high accuracy given by the results of the confusion matrix and the precision calculations, which show 99%.A self-balancing type of robot works on the principle of maintaining the balance of the load's position to remains in the center. As a consequence of this principle, the driver can go forward reverse the vehicle by leaning in a particular direction. One of the factors affecting the control model is the weight of the driver. A control system that has been designed will not be able to balance the system if the driver using the vehicle exceeds or less than the predetermined weight value. The main objective of the study is to develop a semi-adaptive control system by implementing an Artificial Neural Network (ANN) algorithm that can estimate the driver's weight and use this information to reset the gain used in the control system. The experimental results show that the Artificial Neural Network can be used to estimate the weight of the driver's body by using 50-ms-duration of tilt sensor data to categorize into three defined classes that have been set. The ANN algorithm provides a high accuracy given by the results of the confusion matrix and the precision calculations, which show 99%

    ROS-based Controller for a Two-Wheeled Self-Balancing Robot

    Get PDF
    In this article, a controller based on a Robot Operating System (ROS) for a two-wheeled self-balancing robot is designed. The proposed ROS architecture is open, allowing the integration of different sensors, actuators, and processing units. The low-cost robot was designed for educational purposes. It used an ESP32 microcontroller as the central unit, an MPU6050 Inertial Measurement Unit sensor, DC motors with encoders, and an L298N integrated circuit as a power stage. The mathematical model is analyzed through Newton-Euler and linearized around an equilibrium point. The control objective is to self-balance the robot to the vertical axis in the presence of disturbances. The proposed control is based on a bounded saturation, which is lightweight and easy to implement in embedded systems with low computational resources. Experimental results are performed in real-time under regulation, conditions far from the equilibrium point, and rejection of external disturbances. The results show a good performance, thus validating the mechanical design, the embedded system, and the control scheme. The proposed ROS architecture allows the incorporation of different modules, such as mapping, autonomous navigation, and manipulation, which contribute to studying robotics, control, and embedded systems

    Modelling and robust controller design for an underactuated self-balancing robot with uncertain parameter estimation

    Get PDF
    A comprehensive literature review of self-balancing robot (SBR) provides an insight to the strengths and limitations of the available control techniques for different applications. Most of the researchers have not included the payload and its variations in their investigations. To address this problem comprehensively, it was realized that a rigorous mathematical model of the SBR will help to design an effective control for the targeted system. A robust control for a two-wheeled SBR with unknown payload parameters is considered in these investigations. Although, its mechanical design has the advantage of additional maneuverability, however, the robot's stability is affected by changes in the rider's mass and height, which affect the robot's center of gravity (COG). Conventionally, variations in these parameters impact the performance of the controller that are designed with the assumption to operate under nominal values of the rider's mass and height. The proposed solution includes an extended Kalman filter (EKF) based sliding mode controller (SMC) with an extensive mathematical model describing the dynamics of the robot itself and the payload. The rider's mass and height are estimated using EKF and this information is used to improve the control of SBR. Significance of the proposed method is demonstrated by comparing simulation results with the conventional SMC under different scenarios as well as with other techniques in literature. The proposed method shows zero steady state error and no overshoot. Performance of the conventional SMC is improved with controller parameter estimation. Moreover, the stability issue in the reaching phase of the controller is also solved with the availability of parameter estimates. The proposed method is suitable for a wide range of indoor applications with no disturbance. This investigation provides a comprehensive comparison of available techniques to contextualize the proposed method within the scope of self-balancing robots for indoor applications

    Hybrid spiral-dynamic bacteria-chemotaxis algorithm with application to control two-wheeled machines

    Get PDF
    This paper presents the implementation of the hybrid spiral-dynamic bacteria-chemotaxis (HSDBC) approach to control two different configurations of a two-wheeled vehicle. The HSDBC is a combination of bacterial chemotaxis used in bacterial forging algorithm (BFA) and the spiral-dynamic algorithm (SDA). BFA provides a good exploration strategy due to the chemotaxis approach. However, it endures an oscillation problem near the end of the search process when using a large step size. Conversely; for a small step size, it affords better exploitation and accuracy with slower convergence. SDA provides better stability when approaching an optimum point and has faster convergence speed. This may cause the search agents to get trapped into local optima which results in low accurate solution. HSDBC exploits the chemotactic strategy of BFA and fitness accuracy and convergence speed of SDA so as to overcome the problems associated with both the SDA and BFA algorithms alone. The HSDBC thus developed is evaluated in optimizing the performance and energy consumption of two highly nonlinear platforms, namely single and double inverted pendulum-like vehicles with an extended rod. Comparative results with BFA and SDA show that the proposed algorithm is able to result in better performance of the highly nonlinear systems

    Fuzzy adaptive control of a two-wheeled inverted pendulum

    Get PDF
    Recently, the two-wheeled inverted pendulum has drawn the attention of robotic community in view of a plethora of applications, such as transport vehicles: Segway, teleconferencing robots, and electronic network-vehicle. As a widely-used personal transportation vehicle, a two-wheeled inverted pendulum robot has the advantages of small size and simple structure. Moreover, with the advent of modern control technology, these kinds of platforms with safety features and sophisticated control functions can be cost down, so that they have high potential to satisfy stringent requirements of various autonomous service robots with high speed. At the same time, it is of great interest from control point of view as the inverted pendulum is a complicated, strongly coupled, unstable and nonlinear system. Therefore, it is an ideal experimental platform for various control theories and experiments. To understand such a complex system, the Lagrangian equation has been introduced to develop a dynamic model. And following the mathematical model, linear quadratic regulator control and fuzzy adaptive method are proposed for upright stabilization, velocity control and position control of the system. However, sometimes these kinds of robots need to move on a slope, so an advanced linear quadratic regulator controller and a modified fuzzy adaptive controller have been proposed to achieve position control on a slope for the robot while stabilizing its body in balance. In addition, trajectory tracking control using proportional integral derivative control and sliding mode control with fuzzy adaptive backstepping method is also designed to make the robot autonomously navigate in two dimensional plane. Simulation results indicate that the proposed controllers are capable of providing appropriate control actions to steer the vehicle in desired manners. Then, a couple of real time experiments have been conducted to verify the the effectiveness of the developed control strategies

    Research on Self-balancing Two Wheels Mobile Robot Control System Analysis

    Get PDF
    The paper presents the research on self-balancing two-wheels mobile robot control system analysis with experimental studies. The research problem in this work is to stabilize the mobile robot with self-control and to carry the sensitive things without failing in a long span period. The main objective of this study is to focus on the mathematical modelling of mobile robot from laboratory scale to real world applications. The numerical expression with mathematical modelling is very important to control the mobile robot system with linearization. The fundamental concepts of dynamic system stability were utilized for maintaining the stability of the constructed mobile robot system. The controller design is also important for checking the stability and the appropriate controller design is proportional, integral,and derivative – PID controller and Linear Quadratic Regulator (LQR). The steady state error could be reduced by using such kind of PID controller.The simulation of numerical expression on mathematical modeling was conducted in MATLAB environments. The confirmation results from the simulation techniques were applied to construct the hardware design of mobile robot system for practical study. The results from simulation approaches and experimental approaches are matched in various kinds of analyses. The constructed mobile robot system was designed and analyzed in the control system design laboratory of Yangon Technological University (YTU)

    Modelling and control of a novel structure two-wheeled robot with an extendable intermediate body

    Get PDF
    corecore