149 research outputs found

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Static force capabilities and dynamic capabilities of parallel mechanisms equipped with safety clutches

    Get PDF
    Cette thèse étudie les forces potentielles des mécanismes parallèles plans à deux degrés de liberté équipés d'embrayages de sécurité (limiteur de couple). Les forces potentielles sont étudiées sur la base des matrices jacobienne. La force maximale qui peut être appliquée à l'effecteur en fonction des limiteurs de couple ainsi que la force maximale isotrope sont déterminées. Le rapport entre ces deux forces est appelé l'efficacité de la force et peut être considéré ; comme un indice de performance. Enfin, les résultats numériques proposés donnent un aperçu sur la conception de robots coopératifs reposant sur des architectures parallèles. En isolant chaque lien, les modèles dynamiques approximatifs sont obtenus à partir de l'approche Newton-Euler et des équations de Lagrange pour du tripteron et du quadrupteron. La plage de l'accélération de l'effecteur et de la force externe autorisée peut être trouvée pour une plage donnée de forces d'actionnement.This thesis investigates the force capabilities of two-degree-of-freedom planar parallel mechanisms that are equipped with safety clutches (torque limiters). The force capabilities are studied based on the Jacobian matrices. The maximum force that can be applied at the end-effector for given torque limits (safety index) is determined together with the maximum isotropic force that can be produced. The ratio between these two forces, referred to as the force effectiveness, can be considered as a performance index. Finally, some numerical results are proposed which can provide insight into the design of cooperation robots based on parallel architectures. Considering each link and slider system as a single body, approximate dynamic models are derived based on the Newton-Euler approach and Lagrange equations for the tripteron and the quadrupteron. The acceleration range or the external force range of the end-effector are determined and given as a safety consideration with the dynamic models

    Wrench capability of planar manipulators

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Mecânica, Florianópolis, 2016.Robôs são amplamente utilizados em fábricas, e novas aplicações no espaço, nos oceanos, nas indústrias nucleares e em outros campos estão sendo ativamente desenvolvidas. A criação de robôs autônomos que podem aprender a agir em ambientes imprevisíveis têm sido um objetivo de longa data da robótica, da inteligência artificial, e das ciências cognitivas.Um passo importante para a autonomia dos robôs é a necessidade de dotá-los com um certo nível de independência, a fim de enfrentar as mudanças rápidas no ambiente circundante; para obter robôs que operem fora de ambientes rigidamente estruturados, tais como centros de investigação ou instalações de universidades e sem precisar da supervisão de engenheiros ou especialistas, é necessário enfrentar diferentes desafios tecnológicos, entre eles, o desenvolvimento de estratégias que permitam que os robôs interajam com o ambiente. Neste contexto, quando um contacto físico com o ambiente é estabelecido, uma força específica precisa de ser exercida e esta força tem de ser controlada em relação ao processo a fim de evitar a sobrecarga ou danificar o manipulador ou os objetos a serem manipulados.O principal objetivo deste trabalho é apresentar novas metodologias desenvolvidas para determinar a máxima carga que um mecanismo ou manipulador planar pode aplicar ou suportar (capacidade de carga), sejam eles paralelos, seriais ou híbridos e com redundância ou não. A fim de resolver o problema da capacidade de carga, neste trabalho foram propostas duas novas abordagens com base no método do fator de escala clássico e nos métodos clássicos de otimização. Essas novas abordagens deram como resultado um novo método chamado de método de fator de escala modificado utilizado para resolver a capacidade de carga em manipuladores seriais planares e quatro modelos matemáticos para resolver o problema de capacidade de carga em manipuladores paralelos planares com um grau líquido de restrição igual três, quatro, cinco ou seis (CN = 3, CN = 4, CN = 5 ou CN = 6).Abstract : Robots are now widely used in factories, and new applications of robots in space, the oceans, nuclear industries, and other fields are being actively developed. Creating autonomous robots that can learn to act in unpredictable environments has been a long-standing goal of robotics, artificial intelligence, and cognitive sciences.An important step towards the autonomy of robots is the need to provide them with a certain level of independence in order to face quick changes in the environment surrounding them; to get robots operating outside rigidly structured environments, such as research centres or universities facilities and beyond the supervision of engineers or experts, it is necessary to face different technological challenges, amongst them, the development of strategies that allow robots to interact with the environment. In this context, when a physical contact with the the environment is established, a process-specific force need to be exerted and this force has to be controlled in relation to the particular process in order to prevent overloading or damaging the manipulator or the objects to be manipulated.The main objective of this work is to present new methodologies developed for determining the maximum wrench that can be applied or sustained (wrench capability) in planar mechanisms and manipulators, whether it be serial parallel or hybrid and with redundancy or not. In order to solve the wrench capability problem, in this work two new approaches were proposed based in the classic scaling factor method and in classical optimization methods. These new approaches gave as result a new method called the modified scaling factor method used to solve the wrench capability in planar serial manipulators and four mathematical closed-form solutions to solve the wrench capability problem in planar parallel manipulators with a net degree of constraint equal to three, four, five or six (CN = 3, CN = 4, CN = 5 ou CN = 6)

    Design and analysis of a parallel mechanism for kinematically redundant hybrid planar laser cutting machine

    Get PDF
    Conventional planar laser cutting machines cannot achieve high accelerations, because the required precision values cannot be achieved due to the high inertial loads. Machines configured as kinematically redundant mechanisms are able to reach 5-6 g acceleration levels since they include a parallel mechanism with a smaller workspace which is exposed to smaller inertial loads. The study presented in this paper focuses on the design of a parallel planar mechanism to be integrated to the main axes of conventional planar laser cutting machines to achieve higher accelerations of the laser head up to 6 g. Parallel mechanism’s conceptual design and dynamic balancing studies are provided along with the joint clearance effect on precision due to having more joint structures.Republic of Turkey Ministry of Science, Industry and Technology & Coşkunöz Metal Form (Project code: 01668.STZ.2012-2

    Design and analysis of kinematically redundant planar parallel manipulator for isotropic stiffness condition

    Get PDF
    Parallel manipulators are a form of closed loop linkages and have a wide range of applications e.g. surgical robots, flight simulators, pointing devices etc. Parallel mechanisms have many advantages over serial manipulator. Higher accuracy, stiffness and increased payload capacity are the characteristics of parallel manipulator. In spite of many advantages, they have limited workspace and more singularity regions. So, redundant architectures have become popular. However, redundancy leads to infinite solutions for inverse kinematic problem. The current work addresses this issue of resolving the redundancy of kinematically redundant planar parallel manipulators using optimization based approach. First the conventional non-redundant 3-RPR planar parallel manipulator is presented. Afterwards the kinematically redundant counterpart 3-PRPR is discussed and actuation redundant 4-RPR has been touched upon briefly. Computer simulations have been performed for the kinematic issues using MATLAB programme . The workspace of redundant and non-redundant parallel manipulators have been obtained. The generalized stiffness matrix has been derived based upon the Jacobian model and the principle of duality between kinematics and statics. A stiffness index has been formulated and the isotropy of stiffness index is used as the criterion for resolving redundancy. A novel spiral optimization metaheuristics has been used to achieve the isotropic stiffness within the selected workshape and the results are compared against particle swarm optimization. The results obtained from the novel Spiral optimization are found to be more effective and closer to the objective function as compared to the particle swarm optimization. Optimum redundant parameters are obtained as a result of the analysis. A wooden skeletal prototype has also been fabricated to enhance the understanding of the mechanism workability

    Redundant Unilaterally Actuated Kinematic Chains: Modeling and Analysis

    Get PDF
    Unilaterally Actuated Robots (UAR)s are a class of robots defined by an actuation that is constrained to a single sign. Cable robots, grasping, fixturing and tensegrity systems are certain applications of UARs. In recent years, there has been increasing interest in robotic and other mechanical systems actuated or constrained by cables. In such systems, an individual constraint is applied to a body of the mechanism in the form of a pure force which can change its magnitude but cannot reverse its direction. This uni-directional actuation complicates the design of cable-driven robots and can result in limited performance. Cable Driven Parallel Robot (CDPR)s are a class of parallel mechanisms where the actuating legs are replaced by cables. CDPRs benefit from the higher payload to weight ratio and increased rigidity. There is growing interest in the cable actuation of multibody systems. There are potential applications for such mechanisms where low moving inertia is required. Cable-driven serial kinematic chain (CDSKC) are mechanisms where the rigid links form a serial kinematic chain and the cables are arranged in a parallel configuration. CDSKC benefits from the dexterity of the serial mechanisms and the actuation advantages of cable-driven manipulators. Firstly, the kinematic modeling of CDSKC is presented, with a focus on different types of cable routings. A geometric approach based on convex cones is utilized to develop novel cable actuation schemes. The cable routing scheme and architecture have a significant effect on the performance of the robot resulting in a limited workspace and high cable forces required to perform a desired task. A novel cable routing scheme is proposed to reduce the number of actuating cables. The internal routing scheme is where, in addition to being externally routed, the cable can be re-routed internally within the link. This type of routing can be considered as the most generalized form of the multi-segment pass-through routing scheme where a cable segment can be attached within the same link. Secondly, the analysis for CDSKCs require extensions from single link CDPRs to consider different routings. The conditions to satisfy wrench-closure and the workspace analysis of different multi-link unilateral manipulators are investigated. Due to redundant and constrained actuation, it is possible for a motion to be either infeasible or the desired motion can be produced by an infinite number of different actuation profiles. The motion generation of the CDSKCs with a minimal number of actuating cables is studied. The static stiffness evaluation of CDSKCs with different routing topologies and isotropic stiffness conditions were investigated. The dexterity and wrench-based metrics were evaluated throughout the mechanism's workspace. Through this thesis, the fundamental tools required in studying cable-driven serial kinematic chains have been presented. The results of this work highlight the potential of using CDSKCs in bio-inspired systems and tensegrity robots

    Novel Design and Analysis of Parallel Robotic Mechanisms

    Get PDF
    A parallel manipulator has several limbs that connect and actuate an end effector from the base. The design of parallel manipulators usually follows the process of prescribed task, design evaluation, and optimization. This dissertation focuses on interference-free designs of dynamically balanced manipulators and deployable manipulators of various degrees of freedom (DOFs). 1) Dynamic balancing is an approach to reduce shaking loads in motion by including balancing components. The shaking loads could cause noise and vibration. The balancing components may cause link interference and take more actuation energy. The 2-DOF (2-RR)R or 3-DOF (2-RR)R planar manipulator, and 3-DOF 3-RRS spatial manipulator are designed interference-free and with structural adaptive features. The structural adaptions and motion planning are discussed for energy minimization. A balanced 3-DOF (2-RR)R and a balanced 3-DOF 3-RRS could be combined for balanced 6-DOF motion. 2) Deployable feature in design allows a structure to be folded. The research in deployable parallel structures of non-configurable platform is rare. This feature is demanded, for example the outdoor solar tracking stand has non-configurable platform and may need to lie-flat on floor at stormy weathers to protect the structure. The 3-DOF 3-PRS and 3-DOF 3-RPS are re-designed to have deployable feature. The 6-DOF 3-[(2-RR)UU] and 5-DOF PRPU/2-[(2-RR)UU] are designed for deployable feature in higher DOFs. Several novel methods are developed for rapid workspace evaluation, link interference detection and stiffness evaluation. The above robotic manipulators could be grouped as a robotic system that operates in a green way and works harmoniously with nature

    Dexterity, workspace and performance analysis of the conceptual design of a novel three-legged, redundant, lightweight, compliant, serial-parallel robot

    Get PDF
    In this article, the mechanical design and analysis of a novel three-legged, agile robot with passively compliant 4-degrees-of-freedom legs, comprising a hybrid topology of serial, planar and spherical parallel structures, is presented. The design aims to combine the established principle of the Spring Loaded Inverted Pendulum model for energy efficient locomotion with the accuracy and strength of parallel mechanisms for manipulation tasks. The study involves several kinematics and Jacobian based analyses that specifically evaluate the application of a non-overconstrained spherical parallel manipulator as a robot hip joint, decoupling impact forces and actuation torques, suitable for the requirements of legged locomotion. The dexterity is investigated with respect to joint limits and workspace boundary contours, showing that the mechanism stays well conditioned and allows for a sufficient range of motion. Based on the functional redundancy of the constrained serial-parallel architecture it is furthermore revealed that the robot allows for the exploitation of optimal leg postures, resulting in the possible optimization of actuator load distribution and accuracy improvements. Consequently, the workspace of the robot torso as additional end-effector is investigated for the possible application of object manipulation tasks. Results reveal the existence of a sufficient volume applicable for spatial motion of the torso in the statically stable tripodal posture. In addition, a critical load estimation is derived, which yields a posture dependent performance index that evaluates the risks of overload situations for the individual actuators
    corecore