8,309 research outputs found

    Characterizing cardiac involvement in chronic kidney disease using CMR—a systematic review

    Get PDF
    Purpose of Review: The aim of the review was to identify and describe recent advances (over the last 3 years) in cardiac magnetic resonance (CMR) imaging in patients with chronic kidney disease (CKD). We conducted a literature review in line with current guidelines. Recent Findings: The authors identified 22 studies. Patients with CKD had left ventricular global and regional dysfunction and adverse remodeling. Stress testing with CMR revealed a reduced stress-response in CKD patients. Native T1 relaxation times (as a surrogate markers of fibrosis) are elevated in CKD patients, proportional to disease duration. Patients with CKD have reduced strain magnitudes and reduced aortic distensibility. Summary: CMR has diagnostic utility to identify and characterize cardiac involvement in this patient group. A number of papers have described novel findings over the last 3 years, suggesting that CMR has potential to become more widely used in studies in this patient group

    Advances in magnetic resonance imaging of the myocardial area at risk and salvage

    Get PDF
    No abstract available

    Magnetic resonance imaging of myocardial strain after acute ST-segment-elevation myocardial infarction: a systematic review

    Get PDF
    The purpose of this systematic review is to provide a clinically relevant, disease-based perspective on myocardial strain imaging in patients with acute myocardial infarction or stable ischemic heart disease. Cardiac magnetic resonance imaging uniquely integrates myocardial function with pathology. Therefore, this review focuses on strain imaging with cardiac magnetic resonance. We have specifically considered the relationships between left ventricular (LV) strain, infarct pathologies, and their associations with prognosis. A comprehensive literature review was conducted in accordance with the PRISMA guidelines. Publications were identified that (1) described the relationship between strain and infarct pathologies, (2) assessed the relationship between strain and subsequent LV outcomes, and (3) assessed the relationship between strain and health outcomes. In patients with acute myocardial infarction, circumferential strain predicts the recovery of LV systolic function in the longer term. The prognostic value of longitudinal strain is less certain. Strain differentiates between infarcted versus noninfarcted myocardium, even in patients with stable ischemic heart disease with preserved LV ejection fraction. Strain recovery is impaired in infarcted segments with intramyocardial hemorrhage or microvascular obstruction. There are practical limitations to measuring strain with cardiac magnetic resonance in the acute setting, and knowledge gaps, including the lack of data showing incremental value in clinical practice. Critically, studies of cardiac magnetic resonance strain imaging in patients with ischemic heart disease have been limited by sample size and design. Strain imaging has potential as a tool to assess for early or subclinical changes in LV function, and strain is now being included as a surrogate measure of outcome in therapeutic trials

    Advances in computational modelling for personalised medicine after myocardial infarction

    Get PDF
    Myocardial infarction (MI) is a leading cause of premature morbidity and mortality worldwide. Determining which patients will experience heart failure and sudden cardiac death after an acute MI is notoriously difficult for clinicians. The extent of heart damage after an acute MI is informed by cardiac imaging, typically using echocardiography or sometimes, cardiac magnetic resonance (CMR). These scans provide complex data sets that are only partially exploited by clinicians in daily practice, implying potential for improved risk assessment. Computational modelling of left ventricular (LV) function can bridge the gap towards personalised medicine using cardiac imaging in patients with post-MI. Several novel biomechanical parameters have theoretical prognostic value and may be useful to reflect the biomechanical effects of novel preventive therapy for adverse remodelling post-MI. These parameters include myocardial contractility (regional and global), stiffness and stress. Further, the parameters can be delineated spatially to correspond with infarct pathology and the remote zone. While these parameters hold promise, there are challenges for translating MI modelling into clinical practice, including model uncertainty, validation and verification, as well as time-efficient processing. More research is needed to (1) simplify imaging with CMR in patients with post-MI, while preserving diagnostic accuracy and patient tolerance (2) to assess and validate novel biomechanical parameters against established prognostic biomarkers, such as LV ejection fraction and infarct size. Accessible software packages with minimal user interaction are also needed. Translating benefits to patients will be achieved through a multidisciplinary approach including clinicians, mathematicians, statisticians and industry partners
    • …
    corecore