310 research outputs found

    Accelerated Dynamic MRI Using Kernel-Based Low Rank Constraint

    Get PDF
    We present a novel reconstruction method for dynamic MR images from highly under-sampled k-space measurements. The reconstruction problem is posed as spectrally regularized matrix recovery problem, where kernel-based low rank constraint is employed to effectively utilize the non-linear correlations between the images in the dynamic sequence. Unlike other kernel-based methods, we use a single-step regularized reconstruction approach to simultaneously learn the kernel basis functions and the weights. The objective function is optimized using variable splitting and alternating direction method of multipliers. The framework can seamlessly handle additional sparsity constraints such as spatio-temporal total variation. The algorithm performance is evaluated on a numerical phantom and in vivo data sets and it shows significant improvement over the comparison methods

    Deep learning for fast and robust medical image reconstruction and analysis

    Get PDF
    Medical imaging is an indispensable component of modern medical research as well as clinical practice. Nevertheless, imaging techniques such as magnetic resonance imaging (MRI) and computational tomography (CT) are costly and are less accessible to the majority of the world. To make medical devices more accessible, affordable and efficient, it is crucial to re-calibrate our current imaging paradigm for smarter imaging. In particular, as medical imaging techniques have highly structured forms in the way they acquire data, they provide us with an opportunity to optimise the imaging techniques holistically by leveraging data. The central theme of this thesis is to explore different opportunities where we can exploit data and deep learning to improve the way we extract information for better, faster and smarter imaging. This thesis explores three distinct problems. The first problem is the time-consuming nature of dynamic MR data acquisition and reconstruction. We propose deep learning methods for accelerated dynamic MR image reconstruction, resulting in up to 10-fold reduction in imaging time. The second problem is the redundancy in our current imaging pipeline. Traditionally, imaging pipeline treated acquisition, reconstruction and analysis as separate steps. However, we argue that one can approach them holistically and optimise the entire pipeline jointly for a specific target goal. To this end, we propose deep learning approaches for obtaining high fidelity cardiac MR segmentation directly from significantly undersampled data, greatly exceeding the undersampling limit for image reconstruction. The final part of this thesis tackles the problem of interpretability of the deep learning algorithms. We propose attention-models that can implicitly focus on salient regions in an image to improve accuracy for ultrasound scan plane detection and CT segmentation. More crucially, these models can provide explainability, which is a crucial stepping stone for the harmonisation of smart imaging and current clinical practice.Open Acces

    Adaptive nonlocal and structured sparse signal modeling and applications

    Get PDF
    Features based on sparse representation, especially using the synthesis dictionary model, have been heavily exploited in signal processing and computer vision. Many applications such as image and video denoising, inpainting, demosaicing, super-resolution, magnetic resonance imaging (MRI), and computed tomography (CT) reconstruction have been shown to benefit from adaptive sparse signal modeling. However, synthesis dictionary learning typically involves expensive sparse coding and learning steps. Recently, sparsifying transform learning received interest for its cheap computation and its optimal updates in the alternating algorithms. Prior works on transform learning have certain limitations, including (1) limited model richness and structure for handling diverse data, (2) lack of non-local structure, and (3) lack of effective extension to high-dimensional or streaming data. This dissertation focuses on advanced data-driven sparse modeling techniques, especially with nonlocal and structured sparse signal modeling. In the first work of this dissertation, we propose a methodology for learning, dubbed Flipping and Rotation Invariant Sparsifying Transforms (FRIST), to better represent natural images that contain textures with various geometrical directions. The proposed alternating FRIST learning algorithm involves efficient optimal updates. We provide a convergence guarantee, and demonstrate the empirical convergence behavior of the proposed FRIST learning approach. Preliminary experiments show the promising performance of FRIST learning for image sparse representation, segmentation, denoising, robust inpainting, and compressed sensing-based magnetic resonance image reconstruction. Next, we present an online high-dimensional sparsifying transform learning method for spatio-temporal data, and demonstrate its usefulness with a novel video denoising framework, dubbed VIDOSAT. The proposed method is based on our previous work on online sparsifying transform learning, which has low computational and memory costs, and can potentially handle streaming video. By combining with a block matching (BM) technique, the learned model can effectively adapt to video data with various motions. The patches are constructed either from corresponding 2D patches in successive frames or using an online block matching technique. The proposed online video denoising requires little memory and others efficient processing. Numerical experiments are used to analyze the contribution of the various components of the proposed video denoising scheme by "switching off" these components - for example, fixing the transform to be 3D DCT, rather than a learned transform. Other experiments compare to the performance of prior schemes such as dictionary learning-based schemes, and the state-of-the-art VBM3D and VBM4D on several video data sets, demonstrating the promising performance of the proposed methods. In the third part of the dissertation, we propose a joint sparse and low-rank model, dubbed STROLLR, to better represent natural images. Patch-based methods exploit local patch sparsity, whereas other works apply low-rankness of grouped patches to exploit image non-local structures. However, using either approach alone usually limits performance in image restoration applications. In order to fully utilize both the local and non-local image properties, we develop an image restoration framework using a transform learning scheme with joint low-rank regularization. The approach owes some of its computational efficiency and good performance to the use of transform learning for adaptive sparse representation rather than the popular synthesis dictionary learning algorithms, which involve approximation of NP-hard sparse coding and expensive learning steps. We demonstrate the proposed framework in various applications to image denoising, inpainting, and compressed sensing based magnetic resonance imaging. Results show promising performance compared to state-of-the-art competing methods. Last, we extend the effective joint sparsity and low-rankness model from image to video applications. We propose a novel video denoising method, based on an online tensor reconstruction scheme with a joint adaptive sparse and low-rank model, dubbed SALT. An efficient and unsupervised online unitary sparsifying transform learning method is introduced to impose adaptive sparsity on the fly. We develop an efficient 3D spatio-temporal data reconstruction framework based on the proposed online learning method, which exhibits low latency and can potentially handle streaming videos. To the best of our knowledge, this is the first work that combines adaptive sparsity and low-rankness for video denoising, and the first work that solves the proposed problem in an online fashion. We demonstrate video denoising results over commonly used videos from public datasets. Numerical experiments show that the proposed video denoising method outperforms competing methods

    Robust Algorithms for Low-Rank and Sparse Matrix Models

    Full text link
    Data in statistical signal processing problems is often inherently matrix-valued, and a natural first step in working with such data is to impose a model with structure that captures the distinctive features of the underlying data. Under the right model, one can design algorithms that can reliably tease weak signals out of highly corrupted data. In this thesis, we study two important classes of matrix structure: low-rankness and sparsity. In particular, we focus on robust principal component analysis (PCA) models that decompose data into the sum of low-rank and sparse (in an appropriate sense) components. Robust PCA models are popular because they are useful models for data in practice and because efficient algorithms exist for solving them. This thesis focuses on developing new robust PCA algorithms that advance the state-of-the-art in several key respects. First, we develop a theoretical understanding of the effect of outliers on PCA and the extent to which one can reliably reject outliers from corrupted data using thresholding schemes. We apply these insights and other recent results from low-rank matrix estimation to design robust PCA algorithms with improved low-rank models that are well-suited for processing highly corrupted data. On the sparse modeling front, we use sparse signal models like spatial continuity and dictionary learning to develop new methods with important adaptive representational capabilities. We also propose efficient algorithms for implementing our methods, including an extension of our dictionary learning algorithms to the online or sequential data setting. The underlying theme of our work is to combine ideas from low-rank and sparse modeling in novel ways to design robust algorithms that produce accurate reconstructions from highly undersampled or corrupted data. We consider a variety of application domains for our methods, including foreground-background separation, photometric stereo, and inverse problems such as video inpainting and dynamic magnetic resonance imaging.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143925/1/brimoor_1.pd

    Real-Time Adaptive Video Compression

    Get PDF
    Compressive sensing has been widely applied to problems in signal and imaging processing. In this work, we present an algorithm for predicting optimal real-time compression rates for video. The video data we consider is spatially compressed during the acquisition process, unlike in many of the standard methods. Rather than temporally compressing the frames at a fixed rate, our algorithm adaptively predicts the compression rate given the behavior of a few previous compressed frames. The algorithm uses polynomial fitting and simple filters, making it computationally feasible and easy to implement in hardware. Based on numerical simulations of real videos, the algorithm is able to capture object motion and approximate dynamics within the compressed frames. The adaptive video compression improves the quality of the reconstructed video (as compared to an equivalent fixed rate compression scheme) by several dB of peak signal-to-noise ratio without increasing the amount of information stored, as seen in numerical simulations presented here

    Tight-frame-like Sparse Recovery Using Non-tight Sensing Matrices

    Full text link
    The choice of the sensing matrix is crucial in compressed sensing (CS). Gaussian sensing matrices possess the desirable restricted isometry property (RIP), which is crucial for providing performance guarantees on sparse recovery. Further, sensing matrices that constitute a Parseval tight frame result in minimum mean-squared-error (MSE) reconstruction given oracle knowledge of the support of the sparse vector. However, if the sensing matrix is not tight, could one achieve the reconstruction performance assured by a tight frame by suitably designing the reconstruction strategy? This is the key question that we address in this paper. We develop a novel formulation that relies on a generalized l2-norm-based data-fidelity loss that tightens the sensing matrix, along with the standard l1 penalty for enforcing sparsity. The optimization is performed using proximal gradient method, resulting in the tight-frame iterative shrinkage thresholding algorithm (TF-ISTA). We show that the objective convergence of TF-ISTA is linear akin to that of ISTA. Incorporating Nesterovs momentum into TF-ISTA results in a faster variant, namely, TF-FISTA, whose objective convergence is quadratic, akin to that of FISTA. We provide performance guarantees on the l2-error for the proposed formulation. Experimental results show that the proposed algorithms offer superior sparse recovery performance and faster convergence. Proceeding further, we develop the network variants of TF-ISTA and TF-FISTA, wherein a convolutional neural network is used as the sparsifying operator. On the application front, we consider compressed sensing image recovery (CSIR). Experimental results on Set11, BSD68, Urban100, and DIV2K datasets show that the proposed models outperform state-of-the-art sparse recovery methods, with performance measured in terms of peak signal-to-noise ratio (PSNR) and structural similarity index metric (SSIM).Comment: 33 pages, 12 figure

    Sparse and low-rank techniques for the efficient restoration of images

    Get PDF
    Image reconstruction is a key problem in numerous applications of computer vision and medical imaging. By removing noise and artifacts from corrupted images, or by enhancing the quality of low-resolution images, reconstruction methods are essential to provide high-quality images for these applications. Over the years, extensive research efforts have been invested toward the development of accurate and efficient approaches for this problem. Recently, considerable improvements have been achieved by exploiting the principles of sparse representation and nonlocal self-similarity. However, techniques based on these principles often suffer from important limitations that impede their use in high-quality and large-scale applications. Thus, sparse representation approaches consider local patches during reconstruction, but ignore the global structure of the image. Likewise, because they average over groups of similar patches, nonlocal self-similarity methods tend to over-smooth images. Such methods can also be computationally expensive, requiring a hour or more to reconstruct a single image. Furthermore, existing reconstruction approaches consider either local patch-based regularization or global structure regularization, due to the complexity of combining both regularization strategies in a single model. Yet, such combined model could improve upon existing techniques by removing noise or reconstruction artifacts, while preserving both local details and global structure in the image. Similarly, current approaches rarely consider external information during the reconstruction process. When the structure to reconstruct is known, external information like statistical atlases or geometrical priors could also improve performance by guiding the reconstruction. This thesis addresses limitations of the prior art through three distinct contributions. The first contribution investigates the histogram of image gradients as a powerful prior for image reconstruction. Due to the trade-off between noise removal and smoothing, image reconstruction techniques based on global or local regularization often over-smooth the image, leading to the loss of edges and textures. To alleviate this problem, we propose a novel prior for preserving the distribution of image gradients modeled as a histogram. This prior is combined with low-rank patch regularization in a single efficient model, which is then shown to improve reconstruction accuracy for the problems of denoising and deblurring. The second contribution explores the joint modeling of local and global structure regularization for image restoration. Toward this goal, groups of similar patches are reconstructed simultaneously using an adaptive regularization technique based on the weighted nuclear norm. An innovative strategy, which decomposes the image into a smooth component and a sparse residual, is proposed to preserve global image structure. This strategy is shown to better exploit the property of structure sparsity than standard techniques like total variation. The proposed model is evaluated on the problems of completion and super-resolution, outperforming state-of-the-art approaches for these tasks. Lastly, the third contribution of this thesis proposes an atlas-based prior for the efficient reconstruction of MR data. Although popular, image priors based on total variation and nonlocal patch similarity often over-smooth edges and textures in the image due to the uniform regularization of gradients. Unlike natural images, the spatial characteristics of medical images are often restricted by the target anatomical structure and imaging modality. Based on this principle, we propose a novel MRI reconstruction method that leverages external information in the form of an probabilistic atlas. This atlas controls the level of gradient regularization at each image location, via a weighted total-variation prior. The proposed method also exploits the redundancy of nonlocal similar patches through a sparse representation model. Experiments on a large scale dataset of T1-weighted images show this method to be highly competitive with the state-of-the-art
    • …
    corecore