124 research outputs found

    Ant-based Survivable Routing in Dynamic WDM Networks with Shared Backup Paths

    Get PDF

    Priority based dynamic lightpath allocation in WDM networks.

    Get PDF
    Internet development generates new bandwidth requirement every day. Optical networks employing WDM (wavelength division multiplexing) technology can provide high capacity, low error rate and low delay. They are considered to be future backbone networks. Since WDM networks usually operate in a high speed, network failure (such as fiber cut), even for a short term, can cause huge data lost. So design robust WDM network to survive faults is a crucial issue in WDM networks. This thesis introduces a new and efficient MILP (Mixed Integer Linear Programming) formulation to solve dynamic lightpath allocation problem in survivable WDM networks, using both shared and dedicated path protection. The formulation defines multiple levels of service to further improve resource utilization. Dijkstra\u27s shortest path algorithm is used to pre-compute up to 3 alternative routes between any node pair, so as to limit the lightpath routing problem within up to 3 routes instead of whole network-wide. This way can shorten the solution time of MILP formulation; make it acceptable for practical size network. Extensive experiments carried out on a number of networks show this new MILP formulation can improve performance and is feasible for real-life network. Source: Masters Abstracts International, Volume: 43-01, page: 0249. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    WDM optical network: Efficient techniques for fault-tolerant logic topology design

    Get PDF
    The rapid increase of bandwidth intensive applications has created an unprecedented demand for bandwidth on the Internet. With recent advances in optical technologies, especially the development of wavelength division multiplexing (WDM) techniques, the amount of raw bandwidth available on the fibre links has increased by several orders of magnitude. Due to the large volume of traffic these optical networks carry, there is one very important issue---design of robust networks that can survive faults. Two common mechanisms to protect against the network failure: one is protection and another is restoration. My research focuses on studying the efficient techniques for fault-tolerant logical topology design for the WDM optical network. In my research, the goal is to determine a topology that accommodates the entire traffic flow and provides protection against any single fiber failure. I solve the problem by formulating the logical topology design problem as a MILP optimization problem, which generates the optimum logical topology and the optimum traffic routing scheme. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .S54. Source: Masters Abstracts International, Volume: 43-01, page: 0244. Adviser: Arunita Jaekel. Thesis (M.Sc.)--University of Windsor (Canada), 2004

    Optimized Design of Survivable MPLS over Optical Transport Networks. Optical Switching and Networking

    Get PDF
    In this paper we study different options for the survivability implementation in MPLS over Optical Transport Networks in terms of network resource usage and configuration cost. We investigate two approaches to the survivability deployment: single layer and multilayer survivability and present various methods for spare capacity allocation (SCA) to reroute disrupted traffic. The comparative analysis shows the influence of the traffic granularity on the survivability cost: for high bandwidth LSPs, close to the optical channel capacity, the multilayer survivability outperforms the single layer one, whereas for low bandwidth LSPs the single layer survivability is more cost-efficient. For the multilayer survivability we demonstrate that by mapping efficiently the spare capacity of the MPLS layer onto the resources of the optical layer one can achieve up to 22% savings in the total configuration cost and up to 37% in the optical layer cost. Further savings (up to 9 %) in the wavelength use can be obtained with the integrated approach to network configuration over the sequential one, however, at the increase in the optimization problem complexity. These results are based on a cost model with actual technology pricing and were obtained for networks targeted to a nationwide coverage

    Resource Allocation in Survivable WDM Networks Under a Sliding Scheduled Traffic Model

    Get PDF
    In recent years there has been an increasing number of applications that require periodic use of lightpaths at predefined time intervals, such as database backup and on-line classes. A new traffic model, referred to as the scheduled traffic model, has been proposed to handle such scheduled lightpath demands. In this thesis we present two new integer linear program ( ILP) formulations for the more general sliding scheduled traffic model, where the setup and teardown times may vary within a specified range. We consider both wavelength convertible networks and networks without wavelength conversion capability. Our ILP formulations jointly optimize the problem of scheduling the demands ( in time) and allocating resources for the scheduled lightpaths. Simulation results show that our formulations are able to generate optimal solutions for practical sized networks. For larger networks, we have proposed a fast two-step heuristic to solve the demand scheduling problem and the RWA problem separately

    Heuristic for the design of fault tolerant logical topology.

    Get PDF
    Wavelength division multiplexing (WDM) in optical fiber networks is widely viewed as the savior for its potential to satisfy the huge bandwidth requirement of network users. Optical cross connect (OCX) in WDM network facilitates the switching of signal on any wavelength from any input port to any output port. As a result, it is possible to establish ligthpaths between any pair of nodes. The set of lightpaths established over fiber links defines logical topology. In our thesis, we proposed a heuristic approach for the design of fault tolerant logical topology. Our design approach generalizes the design protection concept and enforces wavelength continuity constraint in a multi-hop optical network. In our work, we first designed logical topology for fault free state of the network. We, then, added additional lightpaths for each single link failure scenario. Numerical results clearly show that our approach outperforms Shared path protection and Dedicated path protection. Our simulation result shows that our approach is feasible for large networks. (Abstract shortened by UMI.) Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .S24. Source: Masters Abstracts International, Volume: 44-03, page: 1413. Thesis (M.Sc.)--University of Windsor (Canada), 2005
    • …
    corecore