16,829 research outputs found

    Visual analytics for supply network management: system design and evaluation

    Full text link
    We propose a visual analytic system to augment and enhance decision-making processes of supply chain managers. Several design requirements drive the development of our integrated architecture and lead to three primary capabilities of our system prototype. First, a visual analytic system must integrate various relevant views and perspectives that highlight different structural aspects of a supply network. Second, the system must deliver required information on-demand and update the visual representation via user-initiated interactions. Third, the system must provide both descriptive and predictive analytic functions for managers to gain contingency intelligence. Based on these capabilities we implement an interactive web-based visual analytic system. Our system enables managers to interactively apply visual encodings based on different node and edge attributes to facilitate mental map matching between abstract attributes and visual elements. Grounded in cognitive fit theory, we demonstrate that an interactive visual system that dynamically adjusts visual representations to the decision environment can significantly enhance decision-making processes in a supply network setting. We conduct multi-stage evaluation sessions with prototypical users that collectively confirm the value of our system. Our results indicate a positive reaction to our system. We conclude with implications and future research opportunities.The authors would like to thank the participants of the 2015 Businessvis Workshop at IEEE VIS, Prof. Benoit Montreuil, and Dr. Driss Hakimi for their valuable feedback on an earlier version of the software; Prof. Manpreet Hora for assisting with and Georgia Tech graduate students for participating in the evaluation sessions; and the two anonymous reviewers for their detailed comments and suggestions. The study was in part supported by the Tennenbaum Institute at Georgia Tech Award # K9305. (K9305 - Tennenbaum Institute at Georgia Tech Award)Accepted manuscrip

    A semi-supervised approach to visualizing and manipulating overlapping communities

    Get PDF
    When evaluating a network topology, occasionally data structures cannot be segmented into absolute, heterogeneous groups. There may be a spectrum to the dataset that does not allow for this hard clustering approach and may need to segment using fuzzy/overlapping communities or cliques. Even to this degree, when group members can belong to multiple cliques, there leaves an ever present layer of doubt, noise, and outliers caused by the overlapping clustering algorithms. These imperfections can either be corrected by an expert user to enhance the clustering algorithm or to preserve their own mental models of the communities. Presented is a visualization that models overlapping community membership and provides an interactive interface to facilitate a quick and efficient means of both sorting through large network topologies and preserving the user's mental model of the structure. © 2013 IEEE

    ANIMATED TRANSITION IN SIMILARITY-BASED TILED IMAGE LAYOUT

    Get PDF
    Effective techniques for organizing and visualizing large image collections are in growing demand as visual search gets increasingly popular. iMap is a treemap representation for visualizing and navigating image search and clustering results based on the evaluation of image similarity using both visual and textual information. iMap not only makes effective use of available display area to arrange images but also maintains stable update when images are inserted or removed during the query. A key challenge of using iMap lies in the difficult to follow and track the changes when updating the image arrangement as the query image changes. For many information visualization applications, showing the transition when interacting with the data is critically important as it can help users better perceive the changes and understand the underlying data. This work investigates the effectiveness of animated transition in a tiled image layout where the spiral arrangement of the images is based on their similarity. Three aspects of animated transition are considered, including animation steps, animation actions, and flying paths. Exploring and weighting the advantages and disadvantages of different methods for each aspect and in conjunction with the characteristics of the spiral image layout, we present an integrated solution, called AniMap, for animating the transition from an old layout to a new layout when a different image is selected as the query image. To smooth the animation and reduce the overlap among images during the transition, we explore different factors that might have an impact on the animation and propose our solution accordingly. We show the effectiveness of our animated transition solution by demonstrating experimental results and conducting a comparative user study

    Fast filtering and animation of large dynamic networks

    Full text link
    Detecting and visualizing what are the most relevant changes in an evolving network is an open challenge in several domains. We present a fast algorithm that filters subsets of the strongest nodes and edges representing an evolving weighted graph and visualize it by either creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is an approximation of exponential sliding time-window that scales linearly with the number of interactions. We compare the algorithm against rectangular and exponential sliding time-window methods. Our network filtering algorithm: i) captures persistent trends in the structure of dynamic weighted networks, ii) smoothens transitions between the snapshots of dynamic network, and iii) uses limited memory and processor time. The algorithm is publicly available as open-source software.Comment: 6 figures, 2 table

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    • …
    corecore