1,757 research outputs found

    Design and Experimental Evaluation of a Route Optimisation Solution for NEMO

    Get PDF
    An important requirement for Internet protocol (IP) networks to achieve the aim of ubiquitous connectivity is network mobility (NEMO). With NEMO support we can provide Internet access from mobile platforms, such as public transportation vehicles, to normal nodes that do not need to implement any special mobility protocol. The NEMO basic support protocol has been proposed in the IETF as a first solution to this problem, but this solution has severe performance limitations. This paper presents MIRON: Mobile IPv6 route optimization for NEMO, an approach to the problem of NEMO support that overcomes the limitations of the basic solution by combining two different modes of operation: a Proxy-MR and an address delegation with built-in routing mechanisms. This paper describes the design and rationale of the solution, with an experimental validation and performance evaluation based on an implementation.Publicad

    Solutions for IPv6-based mobility in the EU project MobyDick

    Get PDF
    Proceedings of the WTC 2002, 18th World Telecommunications Congress, Paris, France, 22 -27 September, 2002.Mobile Internet technology is moving towards a packet-based or, more precisely, IPv6-based network. Current solutions on Mobile IPv6 and other related QoS and AAA matters do not offer the security and quality users have come to take for granted. The EU IST project Moby Dick has taken on the challenge of providing a solution that integrates QoS, mobility and AAA in a heterogeneous access environment. This paper focuses on the mobility part of the project, describes and justifies the handover approach taken, shows how QoS-aware and secure handover is achieved, and introduces the project's paging concept. It shows that a transition to a fully integrated IP-RAN and IP-Backbone has become a distinct option for the future.Publicad

    Mobile IP: state of the art report

    Get PDF
    Due to roaming, a mobile device may change its network attachment each time it moves to a new link. This might cause a disruption for the Internet data packets that have to reach the mobile node. Mobile IP is a protocol, developed by the Mobile IP Internet Engineering Task Force (IETF) working group, that is able to inform the network about this change in network attachment such that the Internet data packets will be delivered in a seamless way to the new point of attachment. This document presents current developments and research activities in the Mobile IP area

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    Segment Routing: a Comprehensive Survey of Research Activities, Standardization Efforts and Implementation Results

    Full text link
    Fixed and mobile telecom operators, enterprise network operators and cloud providers strive to face the challenging demands coming from the evolution of IP networks (e.g. huge bandwidth requirements, integration of billions of devices and millions of services in the cloud). Proposed in the early 2010s, Segment Routing (SR) architecture helps face these challenging demands, and it is currently being adopted and deployed. SR architecture is based on the concept of source routing and has interesting scalability properties, as it dramatically reduces the amount of state information to be configured in the core nodes to support complex services. SR architecture was first implemented with the MPLS dataplane and then, quite recently, with the IPv6 dataplane (SRv6). IPv6 SR architecture (SRv6) has been extended from the simple steering of packets across nodes to a general network programming approach, making it very suitable for use cases such as Service Function Chaining and Network Function Virtualization. In this paper we present a tutorial and a comprehensive survey on SR technology, analyzing standardization efforts, patents, research activities and implementation results. We start with an introduction on the motivations for Segment Routing and an overview of its evolution and standardization. Then, we provide a tutorial on Segment Routing technology, with a focus on the novel SRv6 solution. We discuss the standardization efforts and the patents providing details on the most important documents and mentioning other ongoing activities. We then thoroughly analyze research activities according to a taxonomy. We have identified 8 main categories during our analysis of the current state of play: Monitoring, Traffic Engineering, Failure Recovery, Centrally Controlled Architectures, Path Encoding, Network Programming, Performance Evaluation and Miscellaneous...Comment: SUBMITTED TO IEEE COMMUNICATIONS SURVEYS & TUTORIAL

    E-D2HCP: enhanced distributed dynamic host configuration protocol

    Get PDF
    Mobile Ad Hoc Networks (MANETs) consist of mobile nodes equipped with wireless devices. They do not need any kind of pre-existent infrastructure and are about self-managed networks. MANETs enable communication between mobile nodes without direct links and across multihop paths. To ensure correct operation of the routing protocols, MANETs, have to assign unique IP addresses to the MANET devices. Furthermore, the address assignment is an important issue when dealing with MANET networks because the traditional approaches are not applicable without some changes, having to provide new protocols for the address auto-configuration. These schemes must take into account the properties of MANETs such as dynamic topology, limited resources or lack of infrastructure. In this paper, we propose a stateful scheme for dynamic allocation of IP addresses in MANETs entitled Extended Distributed Dynamic Host Configuration Protocol because it is based on a previous piece of work (D2CHP). This extension includes the network merging not covered by its predecessor. Simulation results show that the new protocol also improves D2HCP functionality in areas such as fault tolerance, concurrency and latency.Sección Deptal. de Sistemas Informáticos y ComputaciónFac. de Ciencias MatemáticasTRUEAgencia Espanola de Cooperacion Internacional para el Desarrollo (AECID, Spain) through Accion Integrada MAEC-AECID MEDITERRANEOSecurity Engineering Research Center - Ministry of Knowledge Economy (MKE, Korea)pu

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    Mobile Access to the Internet

    Get PDF
    In this paper various aspects of mobile access to Internet are discussed. We mention general Internet protocols and mobile enhancements and also future models that will be used in near future
    • …
    corecore