464 research outputs found

    An optimum dynamic priority-based call admission control scheme for universal mobile telecommunications system

    Get PDF
    The dynamism associated with quality of service (QoS) requirement for traffic emanating from smarter end users devices founded on the internet of things (IoTs) drive, places a huge demand on modern telecommunication infrastructure. Most telecom networks, currently utilize robust call admission control (CAC) policies to ameliorate this challenge. However, the need for smarter CAC has becomes imperative owing to the sensitivity of traffic currently being supported. In this work, we developed a prioritized CAC algorithm for third Generation (3G) wireless cellular network. Based on the dynamic priority CAC (DP-CAC) model, we proposed an optimal dynamic priority CAC (ODP-CAC) scheme for Universal Mobile Telecommunication System (UMTS). We then carried out simulation under heavy traffic load while also exploiting renegotiation among different call traffic classes. Also, we introduced queuing techniques to enhance the new calls success probability while still maintaining a good handoff failure across the network. Results show that ODP-CAC provides an improved performance with regards to the probability of call drop for new calls, network load utilization and grade of service with average percentage value of 15.7%, 5.4% and 0.35% respectively

    Call Admission Control in Mobile Wireless

    Get PDF
    Some problems related to wireless network access are discussed in the article. Special attention is paid to Medium Access Control and Call Admission Control. Both have direct impact on communication link accession. While the first one dictates how to, the second one decides who can access the link. The problems with wireless medium access are mentioned and requirements on MAC protocols are named. Also need for CAC algorithms is illustrated and simple functional example is proposed. Finally, the reasons for future enhancements are shortly discovered

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    A micro-mobility solution for supporting QoS in global mobility

    Get PDF
    Today, users want to have simultaneously mobility, Quality of Service (QoS) and be always connected to Internet. Therefore, this paper proposes a QoS micro-mobility solution able to provide QoS support for global mobility. The solution comprises enhancements in the mobility management of Mobile IPv6 (MIPv6) and in the resources management of Differentiated Services (DiffServ) QoS model. The mobility management of MIPv6 was extended with fast and local handovers to improve its efficiency in micro-mobility scenarios with frequent handovers. The DiffServ resource management has been extended with adaptive and dynamic QoS provisioning to improve resources utilization in mobile IP networks. Further, in order to improve resources utilization the mobility and QoS messages were coupled, providing a resource management able to, proactively, react to mobile events. The performance improvement of the proposed solution and the model parametrization was evaluated using a simulation model. Simulation results indicate that the solution avoids network congestion and starvation of less priority DiffServ classes. Moreover, the results also indicate that bandwidth utilization for priority classes increases and the QoS offered to MN's applications, in each DiffServ class, keeps up unchangeable with MN mobility.(undefined

    Buffer management and cell switching management in wireless packet communications

    Get PDF
    The buffer management and the cell switching (e.g., packet handoff) management using buffer management scheme are studied in Wireless Packet Communications. First, a throughput improvement method for multi-class services is proposed in Wireless Packet System. Efficient traffic management schemes should be developed to provide seamless access to the wireless network. Specially, it is proposed to regulate the buffer by the Selective- Delay Push-In (SDPI) scheme, which is applicable to scheduling delay-tolerant non-real time traffic and delay-sensitive real time traffic. Simulation results show that the performance observed by real time traffics are improved as compared to existing buffer priority scheme in term of packet loss probability. Second, the performance of the proposed SDPI scheme is analyzed in a single CBR server. The arrival process is derived from the superposition of two types of traffics, each in turn results from the superposition of homogeneous ON-OFF sources that can be approximated by means of a two-state Markov Modulated Poisson Process (MMPP). The buffer mechanism enables the ATM layer to adapt the quality of the cell transfer to the QoS requirements and to improve the utilization of network resources. This is achieved by selective-delaying and pushing-in cells according to the class they belong to. Analytical expressions for various performance parameters and numerical results are obtained. Simulation results in term of cell loss probability conform with our numerical analysis. Finally, a novel cell-switching scheme based on TDMA protocol is proposed to support QoS guarantee for the downlink. The new packets and handoff packets for each type of traffic are defined and a new cutoff prioritization scheme is devised at the buffer of the base station. A procedure to find the optimal thresholds satisfying the QoS requirements is presented. Using the ON-OFF approximation for aggregate traffic, the packet loss probability and the average packet delay are computed. The performance of the proposed scheme is evaluated by simulation and numerical analysis in terms of packet loss probability and average packet delay

    A Dynamic Service Level Negotiation Mechanism for QoS Provisioning in NGEO Satellite Networks

    Get PDF
    科研費報告書収録論文(課題番号:17500030/研究代表者:加藤寧/インターネットと高親和性を有する次世代低軌道衛星ネットワークに関する基盤研究

    On the Merits of Deploying TDM-based Next-Generation PON Solutions in the Access Arena As Multiservice, All Packet-Based 4G Mobile Backhaul RAN Architecture

    Full text link
    The phenomenal growth of mobile backhaul capacity required to support the emerging fourth-generation (4G) traffic including mobile WiMAX, cellular Long-Term Evolution (LTE), and LTE-Advanced (LTE-A) requires rapid migration from today\u27s legacy circuit switched T1/E1 wireline and microwave backhaul technologies to a new fiber-supported, all-packet-based mobile backhaul infrastructure. Clearly, a cost effective fiber supported all-packet-based mobile backhaul radio access network (RAN) architecture that is compatible with these inherently distributed 4G RAN architectures is needed to efficiently scale current mobile backhaul networks. However, deploying a green fiber-based mobile backhaul infrastructure is a costly proposition mainly due to the significant cost associated with digging the trenches in which the fiber is to be laid. These, along with the inevitable trend towards all-IP/Ethernet transport protocols and packet switched networks, have prompted many carriers around the world to consider the potential of utilizing the existing fiber-based Passive Optical Network (PON) access infrastructure as an all-packet-based converged fixed-mobile optical access networking transport architecture to backhaul both mobile and typical wireline traffic. Passive Optical Network (PON)-based fiber-to-the-curb/home (FTTC/FTTH) access networks are being deployed around the globe based on two Time-Division Multiplexed (TDM) standards: ITU G.984 Gigabit PON (GPON) and IEEE 802.ah Ethernet PON (EPON). A PON connects a group of Optical Network Units (ONUs) located at the subscriber premises to an Optical Line Terminal (OLT) located at the service provider\u27s facility. It is the purpose of this thesis to examine the technological requirements and assess the performance analysis and feasibility for deploying TDM-based next-generation (NG) PON solutions in the access arena as multiservice, all packet-based 4G mobile backhaul RAN and/or converged fixed-mobile optical networking architecture. Specifically, this work proposes and devises a simple and cost-effective 10G-EPON-based 4G mobile backhaul RAN architecture that efficiently transports and supports a wide range of existing and emerging fixed-mobile advanced multimedia applications and services along with the diverse quality of service (QoS), rate, and reliability requirements set by these services. The techno-economics merits of utilizing PON-based 4G RAN architecture versus that of traditional 4G (mobile WiMAX and LTE) RAN will be thoroughly examine and quantified. To achieve our objective, we utilize the existing fiber-based PON access infrastructure with novel ring-based distribution access network and wireless-enabled OLT and ONUs as the multiservice packet-based 4G mobile backhaul RAN infrastructure. Specifically, to simplify the implementation of such a complex undertaking, this work is divided into two sequential phases. In the first phase, we examine and quantify the overall performance of the standalone ring-based 10G-EPON architecture (just the wireline part without overlaying/incorporating the wireless part (4G RAN)) via modeling and simulations. We then assemble the basic building blocks, components, and sub-systems required to build up a proof-of-concept prototype testbed for the standalone ring-based EPON architecture. The testbed will be used to verify and demonstrate the performance of the standalone architecture, specifically, in terms of power budget, scalability, and reach. In the second phase, we develop an integrated framework for the efficient interworking between the two wireline PON and 4G mobile access technologies, particularly, in terms of unified network control and management (NCM) operations. Specifically, we address the key technical challenges associated with tailoring a typically centralized PON-based access architecture to interwork with and support a distributed 4G RAN architecture and associated radio NCM operations. This is achieved via introducing and developing several salient-networking innovations that collectively enable the standalone EPON architecture to support a fully distributed 4G mobile backhaul RAN and/or a truly unified NG-PON-4G access networking architecture. These include a fully distributed control plane that enables intercommunication among the access nodes (ONUs/BSs) as well as signaling, scheduling algorithms, and handoff procedures that operate in a distributed manner. Overall, the proposed NG-PON architecture constitutes a complete networking paradigm shift from the typically centralized PON\u27s architecture and OLT-based NCM operations to a new disruptive fully distributed PON\u27s architecture and NCM operations in which all the typically centralized OLT-based PON\u27s NCM operations are migrated to and independently implemented by the access nodes (ONUs) in a distributed manner. This requires migrating most of the typically centralized wireline and radio control and user-plane functionalities such as dynamic bandwidth allocation (DBA), queue management and packet scheduling, handover control, radio resource management, admission control, etc., typically implemented in today\u27s OLT/RNC, to the access nodes (ONUs/4G BSs). It is shown that the overall performance of the proposed EPON-based 4G backhaul including both the RAN and Mobile Packet Core (MPC) {Evolved Packet Core (EPC) per 3GPP LTE\u27s standard} is significantly augmented compared to that of the typical 4G RAN, specifically, in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. Furthermore, the proposed architecture enables redistributing some of the intelligence and NCM operations currently centralized in the MPC platform out into the access nodes of the mobile RAN. Specifically, as this work will show, it enables offloading sizable fraction of the mobile signaling as well as actual local upstream traffic transport and processing (LTE bearers switch/set-up, retain, and tear-down and associated signaling commands from the BSs to the EPC and vice-versa) from the EPC to the access nodes (ONUs/BSs). This has a significant impact on the performance of the EPC. First, it frees up a sizable fraction of the badly needed network resources as well as processing on the overloaded centralized serving nodes (AGW) in the MPC. Second, it frees up capacity and sessions on the typically congested mobile backhaul from the BSs to the EPC and vice-versa

    Multimedia Streaming through Wireless Networks

    Full text link
    An overview of wireless networks, cross-layer optimization techniques, and advances in wireless LAN technologies is presented. This paper presents a scalable and adaptive system-level approach to wireless multimedia in the emerging, Proactive Enterprise computing environment. A Distributed Network Information Base with Service Agents at each node is proposed to enable network-wide, proactive adaptation with adaptive routing and end-to-end Quality of Service (QoS) management. The paper suggests that a combination of technological advancements in emerging wireless networks, node-level cross-layer optimizations, and the proposed distributed cross-node system-level architecture are all required to efficiently scale and adapt wireless multimedia in the current market
    corecore