8,228 research outputs found

    A Generalized Notion of Time for Modeling Temporal Networks

    Get PDF
    Most approaches for modeling and analyzing temporal networks do not explicitly discuss the underlying notion of time. In this paper, we therefore introduce a generalized notion of time for temporal networks. Our approach also allows for considering non-deterministic time and incomplete data, two issues that are often found when analyzing data-sets extracted from online social networks, for example. In order to demonstrate the consequences of our generalized notion of time, we also discuss the implications for the computation of (shortest) temporal paths in temporal networks

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Algorithm Engineering for Realistic Journey Planning in Transportation Networks

    Get PDF
    Diese Dissertation beschäftigt sich mit der Routenplanung in Transportnetzen. Es werden neue, effiziente algorithmische Ansätze zur Berechnung optimaler Verbindungen in öffentlichen Verkehrsnetzen, Straßennetzen und multimodalen Netzen, die verschiedene Transportmodi miteinander verknüpfen, eingeführt. Im Fokus der Arbeit steht dabei die Praktikabilität der Ansätze, was durch eine ausführliche experimentelle Evaluation belegt wird

    FairFuzz: Targeting Rare Branches to Rapidly Increase Greybox Fuzz Testing Coverage

    Full text link
    In recent years, fuzz testing has proven itself to be one of the most effective techniques for finding correctness bugs and security vulnerabilities in practice. One particular fuzz testing tool, American Fuzzy Lop or AFL, has become popular thanks to its ease-of-use and bug-finding power. However, AFL remains limited in the depth of program coverage it achieves, in particular because it does not consider which parts of program inputs should not be mutated in order to maintain deep program coverage. We propose an approach, FairFuzz, that helps alleviate this limitation in two key steps. First, FairFuzz automatically prioritizes inputs exercising rare parts of the program under test. Second, it automatically adjusts the mutation of inputs so that the mutated inputs are more likely to exercise these same rare parts of the program. We conduct evaluation on real-world programs against state-of-the-art versions of AFL, thoroughly repeating experiments to get good measures of variability. We find that on certain benchmarks FairFuzz shows significant coverage increases after 24 hours compared to state-of-the-art versions of AFL, while on others it achieves high program coverage at a significantly faster rate
    corecore