32,816 research outputs found

    Prediction of Viking lander camera image quality

    Get PDF
    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances

    A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows

    Get PDF
    In this paper we describe the design and operating characteristics of a computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear flows. The control system is based upon the use of: a video camera to visualize the instantaneous position of the drop or particle; a PDP 11/23 computer, with a pipeline processor acting as an interface between the camera and computer, to calculate the position and implement a control strategy, and d.c. stepping motors to convert an electronic signal to angular velocities of the four rollers. The control objective is to keep the centre of mass of the drop/particle at the centre of the region between the rollers where there is a stagnation point in the undisturbed flow, while maintaining the shear-rate and the ratio of vorticity to strain rate in the flow at fixed values. The resulting system is suitable for studies of: the rotational motions of single solid particles; the deformation and burst of single droplets; or the hydrodynamic interactions of two particles or drops, one of which is held with its centre-of-mass fixed at the stagnation point of the undisturbed flow. In all cases, the flow can be varied from pure rotation to pure strain, and the shear rate can be either steady or changing as a prescribed function of time

    Manned simulations of the SRMS in SIMFAC

    Get PDF
    SIMFAC is a general purpose real-time simulation facility currently configured with an Orbiter-like Crew Compartment and a Displays and Controls (D and C) Subsystem to support the engineering developments of the Space Shuttle Remote Manipulator (SRMS). The simulation consists of a software model of the anthropomorphic SRMS manipulator arm including the characteristics of its control system and joint drive modules. The following are discussed: (1) simulation and scene generation subsystems; (2) the SRMS task in SIMFAC; (3) operator tactics and options; (4) workload; (5) operator errors and sources; (6) areas for further work; and (7) general observations

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C

    Cross-layer Optimized Wireless Video Surveillance

    Get PDF
    A wireless video surveillance system contains three major components, the video capture and preprocessing, the video compression and transmission over wireless sensor networks (WSNs), and the video analysis at the receiving end. The coordination of different components is important for improving the end-to-end video quality, especially under the communication resource constraint. Cross-layer control proves to be an efficient measure for optimal system configuration. In this dissertation, we address the problem of implementing cross-layer optimization in the wireless video surveillance system. The thesis work is based on three research projects. In the first project, a single PTU (pan-tilt-unit) camera is used for video object tracking. The problem studied is how to improve the quality of the received video by jointly considering the coding and transmission process. The cross-layer controller determines the optimal coding and transmission parameters, according to the dynamic channel condition and the transmission delay. Multiple error concealment strategies are developed utilizing the special property of the PTU camera motion. In the second project, the binocular PTU camera is adopted for video object tracking. The presented work studied the fast disparity estimation algorithm and the 3D video transcoding over the WSN for real-time applications. The disparity/depth information is estimated in a coarse-to-fine manner using both local and global methods. The transcoding is coordinated by the cross-layer controller based on the channel condition and the data rate constraint, in order to achieve the best view synthesis quality. The third project is applied for multi-camera motion capture in remote healthcare monitoring. The challenge is the resource allocation for multiple video sequences. The presented cross-layer design incorporates the delay sensitive, content-aware video coding and transmission, and the adaptive video coding and transmission to ensure the optimal and balanced quality for the multi-view videos. In these projects, interdisciplinary study is conducted to synergize the surveillance system under the cross-layer optimization framework. Experimental results demonstrate the efficiency of the proposed schemes. The challenges of cross-layer design in existing wireless video surveillance systems are also analyzed to enlighten the future work. Adviser: Song C
    • …
    corecore