8,210 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    On social networks and collaborative recommendation

    Get PDF
    Social network systems, like last.fm, play a significant role in Web 2.0, containing large amounts of multimedia-enriched data that are enhanced both by explicit user-provided annotations and implicit aggregated feedback describing the personal preferences of each user. It is also a common tendency for these systems to encourage the creation of virtual networks among their users by allowing them to establish bonds of friendship and thus provide a novel and direct medium for the exchange of data. We investigate the role of these additional relationships in developing a track recommendation system. Taking into account both the social annotation and friendships inherent in the social graph established among users, items and tags, we created a collaborative recommendation system that effectively adapts to the personal information needs of each user. We adopt the generic framework of Random Walk with Restarts in order to provide with a more natural and efficient way to represent social networks. In this work we collected a representative enough portion of the music social network last.fm, capturing explicitly expressed bonds of friendship of the user as well as social tags. We performed a series of comparison experiments between the Random Walk with Restarts model and a user-based collaborative filtering method using the Pearson Correlation similarity. The results show that the graph model system benefits from the additional information embedded in social knowledge. In addition, the graph model outperforms the standard collaborative filtering method.</p

    Recent Developments in Recommender Systems: A Survey

    Full text link
    In this technical survey, we comprehensively summarize the latest advancements in the field of recommender systems. The objective of this study is to provide an overview of the current state-of-the-art in the field and highlight the latest trends in the development of recommender systems. The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems, and then delves into the category of knowledge-based recommender systems. In addition, the survey analyzes the robustness, data bias, and fairness issues in recommender systems, summarizing the evaluation metrics used to assess the performance of these systems. Finally, the study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field

    Recommender Systems based on Linked Data

    Get PDF
    Backgrounds: The increase in the amount of structured data published using the principles of Linked Data, means that now it is more likely to find resources in the Web of Data that describe real life concepts. However, discovering resources related to any given resource is still an open research area. This thesis studies Recommender Systems (RS) that use Linked Data as a source for generating recommendations exploiting the large amount of available resources and the relationships among them. Aims: The main objective of this study was to propose a recommendation tech- nique for resources considering semantic relationships between concepts from Linked Data. The specific objectives were: (i) Define semantic relationships derived from resources taking into account the knowledge found in Linked Data datasets. (ii) Determine semantic similarity measures based on the semantic relationships derived from resources. (iii) Propose an algorithm to dynami- cally generate automatic rankings of resources according to defined similarity measures. Methodology: It was based on the recommendations of the Project management Institute and the Integral Model for Engineering Professionals (Universidad del Cauca). The first one for managing the project, and the second one for developing the experimental prototype. Accordingly, the main phases were: (i) Conceptual base generation for identifying the main problems, objectives and the project scope. A Systematic Literature Review was conducted for this phase, which highlighted the relationships and similarity measures among resources in Linked Data, and the main issues, features, and types of RS based on Linked Data. (ii) Solution development is about designing and developing the experimental prototype for testing the algorithms studied in this thesis. Results: The main results obtained were: (i) The first Systematic Literature Re- view on RS based on Linked Data. (ii) A framework to execute and an- alyze recommendation algorithms based on Linked Data. (iii) A dynamic algorithm for resource recommendation based on on the knowledge of Linked Data relationships. (iv) A comparative study of algorithms for RS based on Linked Data. (v) Two implementations of the proposed framework. One with graph-based algorithms and other with machine learning algorithms. (vi) The application of the framework to various scenarios to demonstrate its feasibility within the context of real applications. Conclusions: (i) The proposed framework demonstrated to be useful for develop- ing and evaluating different configurations of algorithms to create novel RS based on Linked Data suitable to users’ requirements, applications, domains and contexts. (ii) The layered architecture of the proposed framework is also useful towards the reproducibility of the results for the research community. (iii) Linked data based RS are useful to present explanations of the recommen- dations, because of the graph structure of the datasets. (iv) Graph-based algo- rithms take advantage of intrinsic relationships among resources from Linked Data. Nevertheless, their execution time is still an open issue. Machine Learn- ing algorithms are also suitable, they provide functions useful to deal with large amounts of data, so they can help to improve the performance (execution time) of the RS. However most of them need a training phase that require to know a priory the application domain in order to obtain reliable results. (v) A log- ical evolution of RS based on Linked Data is the combination of graph-based with machine learning algorithms to obtain accurate results while keeping low execution times. However, research and experimentation is still needed to ex- plore more techniques from the vast amount of machine learning algorithms to determine the most suitable ones to deal with Linked Data

    Collaborative recommendations with content-based filters for cultural activities via a scalable event distribution platform

    Get PDF
    Nowadays, most people have limited leisure time and the offer of (cultural) activities to spend this time is enormous. Consequently, picking the most appropriate events becomes increasingly difficult for end-users. This complexity of choice reinforces the necessity of filtering systems that assist users in finding and selecting relevant events. Whereas traditional filtering tools enable e.g. the use of keyword-based or filtered searches, innovative recommender systems draw on user ratings, preferences, and metadata describing the events. Existing collaborative recommendation techniques, developed for suggesting web-shop products or audio-visual content, have difficulties with sparse rating data and can not cope at all with event-specific restrictions like availability, time, and location. Moreover, aggregating, enriching, and distributing these events are additional requisites for an optimal communication channel. In this paper, we propose a highly-scalable event recommendation platform which considers event-specific characteristics. Personal suggestions are generated by an advanced collaborative filtering algorithm, which is more robust on sparse data by extending user profiles with presumable future consumptions. The events, which are described using an RDF/OWL representation of the EventsML-G2 standard, are categorized and enriched via smart indexing and open linked data sets. This metadata model enables additional content-based filters, which consider event-specific characteristics, on the recommendation list. The integration of these different functionalities is realized by a scalable and extendable bus architecture. Finally, focus group conversations were organized with external experts, cultural mediators, and potential end-users to evaluate the event distribution platform and investigate the possible added value of recommendations for cultural participation
    • …
    corecore