15,714 research outputs found

    Parameter estimation in kinetic reaction models using nonlinear observers facilitated by model extensions

    Get PDF
    An essential part of mathematical modelling is the accurate and reliable estimation of model parameters. In biology, the required parameters are particularly difficult to measure due to either shortcomings of the measurement technology or a lack of direct measurements. In both cases, parameters must be estimated from indirect measurements, usually in the form of time-series data. Here, we present a novel approach for parameter estimation that is particularly tailored to biological models consisting of nonlinear ordinary differential equations. By assuming specific types of nonlinearities common in biology, resulting from generalised mass action, Hill kinetics and products thereof, we can take a three step approach: (1) transform the identification into an observer problem using a suitable model extension that decouples the estimation of non-measured states from the parameters; (2) reconstruct all extended states using suitable nonlinear observers; (3) estimate the parameters using the reconstructed states. The actual estimation of the parameters is based on the intrinsic dependencies of the extended states arising from the definitions of the extended variables. An important advantage of the proposed method is that it allows to identify suitable measurements and/or model structures for which the parameters can be estimated. Furthermore, the proposed identification approach is generally applicable to models of metabolic networks, signal transduction and gene regulation

    Fearful faces have a sensory advantage in the competition for awareness

    Get PDF
    Only a subset of visual signals give rise to a conscious percept. Threat signals, such as fearful faces, are particularly salient to human vision. Research suggests that fearful faces are evaluated without awareness and preferentially promoted to conscious perception. This agrees with evolutionary theories that posit a dedicated pathway specialized in processing threat-relevant signals. We propose an alternative explanation for this "fear advantage." Using psychophysical data from continuous flash suppression (CFS) and masking experiments, we demonstrate that awareness of facial expressions is predicted by effective contrast: the relationship between their Fourier spectrum and the contrast sensitivity function. Fearful faces have higher effective contrast than neutral expressions and this, not threat content, predicts their enhanced access to awareness. Importantly, our findings do not support the existence of a specialized mechanism that promotes threatening stimuli to awareness. Rather, our data suggest that evolutionary or learned adaptations have molded the fearful expression to exploit our general-purpose sensory mechanisms

    Expressing an observer in preferred coordinates by transforming an injective immersion into a surjective diffeomorphism

    Full text link
    When designing observers for nonlinear systems, the dynamics of the given system and of the designed observer are usually not expressed in the same coordinates or even have states evolving in different spaces. In general, the function, denoted τ\tau (or its inverse, denoted τ\tau^*) giving one state in terms of the other is not explicitly known and this creates implementation issues. We propose to round this problem by expressing the observer dynamics in the the same coordinates as the given system. But this may impose to add extra coordinates, problem that we call augmentation. This may also impose to modify the domain or the range of the augmented" τ\tau or τ\tau^*, problem that we call extension. We show that the augmentation problem can be solved partly by a continuous completion of a free family of vectors and that the extension problem can be solved by a function extension making the image of the extended function the whole space. We also show how augmentation and extension can be done without modifying the observer dynamics and therefore with maintaining convergence.Several examples illustrate our results.Comment: Submitted for publication in SIAM Journal of Control and Optimizatio

    Observability/Identifiability of Rigid Motion under Perspective Projection

    Get PDF
    The "visual motion" problem consists of estimating the motion of an object viewed under projection. In this paper we address the feasibility of such a problem. We will show that the model which defines the visual motion problem for feature points in the euclidean 3D space lacks of both linear and local (weak) observability. The locally observable manifold is covered with three levels of lie differentiations. Indeed, by imposing metric constraints on the state-space, it is possible to reduce the set of indistinguishable states. We will then analyze a model for visual motion estimation in terms of identification of an Exterior Differential System, with the parameters living on a topological manifold, called the "essential manifold", which includes explicitly in its definition the forementioned metric constraints. We will show that rigid motion is globally observable/identifiable under perspective projection with zero level of lie differentiation under some general position conditions. Such conditions hold when the viewer does not move on a quadric surface containing all the visible points

    The Long Wavelength Array Software Library

    Full text link
    The Long Wavelength Array Software Library (LSL) is a Python module that provides a collection of utilities to analyze and export data collected at the first station of the Long Wavelength Array, LWA1. Due to the nature of the data format and large-N (\gtrsim100 inputs) challenges faced by the LWA, currently available software packages are not suited to process the data. Using tools provided by LSL, observers can read in the raw LWA1 data, synthesize a filter bank, and apply incoherent de-dispersion to the data. The extensible nature of LSL also makes it an ideal tool for building data analysis pipelines and applying the methods to other low frequency arrays.Comment: accepted to the Journal of Astronomical Instrumentation; 24 pages, 4 figure

    Nonlinear disturbance attenuation control of hydraulic robotics

    Full text link
    This paper presents a novel nonlinear disturbance rejection control for hydraulic robots. This method requires two third-order filters as well as inverse dynamics in order to estimate the disturbances. All the parameters for the third-order filters are pre-defined. The proposed method is nonlinear, which does not require the linearization of the rigid body dynamics. The estimated disturbances are used by the nonlinear controller in order to achieve disturbance attenuation. The performance of the proposed approach is compared with existing approaches. Finally, the tracking performance and robustness of the proposed approach is validated extensively on real hardware by performing different tasks under either internal or both internal and external disturbances. The experimental results demonstrate the robustness and superior tracking performance of the proposed approach
    corecore