507 research outputs found

    Integrated fault-tolerant control approach for linear time-delay systems using a dynamic event-triggered mechanism

    Get PDF
    In this study, a novel integrated fault estimation (FE) and fault-tolerant control (FTC) design approach is developed for a system with time-varying delays and additive fault based on a dynamic event-triggered communication mechanism. The traditional static event-triggered mechanism is modified by adding an internal dynamic variable to increase the inter-event interval and decrease the amount of data transmission. Then, a dynamical observer is designed to estimate both the system state and the unknown fault signal simultaneously. A fault estimation-based FTC approach is then given to remove the effects generated by unknown actuator faults, which guarantees that the faulty closed-loop systems are asymptotical stable with a disturbance attenuation level Îł. By theory analysis, the Zeno phenomenon is excluded in this study. Finally, a real aircraft engine example is provided to illustrate the feasibility of the proposed integrated FE and FTC method

    Adaptive Approximation-Based Control for Nonlinear Systems: A Unified Solution with Accurate and Inaccurate Measurements

    Full text link
    A unified solution to adaptive approximation-based control for nonlinear systems with accurate and inaccurate state measurement is synthesized in this study. Starting from the standard adaptive approximation-based controller with accurate state measurement, its corresponding physical interpretation, stability conclusion, and learning ability are rigorously addressed when facing additive measurement inaccuracy, and explicit answers are obtained in the framework of both controller matching and system matching. Finally, it proves that, with a certain condition, the standard adaptive approximation-based controller works as a unified solution for the cases with accurate and inaccurate measurement, and the solution can be extended to the nonlinear system control problems with extra unknown dynamics or faults in actuator and/or process dynamics. A single-link robot arm example is used for the simulation demonstration of the unified solution

    Consensus of multi-agent systems with faults and mismatches under switched topologies using a delta operator method

    Full text link
    © 2018 Elsevier B.V. This paper studies the consensus of multi-agent systems with faults and mismatches under switched topologies using a delta operator method. Since faults and mismatches can result in failure of the consensus even for a fixed topology with a spanning tree, how to reach a consensus is a complicated and challenging problem under such circumstances especially when part topologies have no spanning tree. Although some works studied the influence of faults and mismatches on the consensus, there is little work on reaching a consensus for the multi-agent systems with faults and mismatches. In this paper, we introduce the delta operator to unify the consensus analysis for continuous, discrete, or sampled systems under one framework. We develop the theories on the delta operator systems first and then apply theories of the delta operator systems to the consensus problems. By converting the consensus problems into stability problems, we investigate and prove consensus and the associated conditions for systems 1) without any fault, 2) with a known fault, and 3) with unknown faults, under switching topologies with matching or mismatching coefficients. Numerical examples are provided and validate the effectiveness of the theoretical results

    Interval observer-based fault detectability analysis using mixed set-invariance theory and sensitivity analysis approach

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in “International Journal of Systems Science” on 06th January 2019, available online: https://www.tandfonline.com/doi/abs/10.1080/00207721.2018.1563221?journalCode=tsys20This paper addresses the characterization of the minimum detectable fault (MDF) by means of residual sensitivity integrated with the set-invariance theory when using an interval observer-based approach as a Fault Detection (FD) scheme. Uncertainties (disturbances and noise) are considered as of unknown but bounded nature (i.e., in the set-membership framework). A zonotopic-set representation towards reducing set operations to simple matrix calculations is utilized to bound the state/output estimations provided by the interval observer-based approach. In order to show the connection between sensitivity and set-invariance analyses, mathematical expressions of the MDF are derived when considering dierent types of faults. Finally, a simulation case study based on a quadruple-tank system is employed to both illustrate and discuss the effectiveness of the proposed approach. Interval observer-based FD scheme is used to test the MDF obtained from the integration of both residual sensitivity analysis and set-invariance theory in the considered case study.Peer ReviewedPostprint (author's final draft

    Fault Detection Filter for Discrete-Time Markov Jump Lur’e Systems

    Get PDF
    We present the design of H_inf Fault Detection Filter (FDF) for Discrete-time Markov Jump Lur'e Systems with bounded sector condition based on the use of Linear Matrix Inequality (LMI). A numerical example is presented to illustrate the effectiveness of the proposed approach

    Fault Tolerant Control Systems:a Development Method and Real-Life Case Study

    Get PDF

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    A control-theoretical fault prognostics and accommodation framework for a class of nonlinear discrete-time systems

    Get PDF
    Fault diagnostics and prognostics schemes (FDP) are necessary for complex industrial systems to prevent unscheduled downtime resulting from component failures. Existing schemes in continuous-time are useful for diagnosing complex industrial systems and no work has been done for prognostics. Therefore, in this dissertation, a systematic design methodology for model-based fault prognostics and accommodation is undertaken for a class of nonlinear discrete-time systems. This design methodology, which does not require any failure data, is introduced in six papers. In Paper I, a fault detection and prediction (FDP) scheme is developed for a class of nonlinear system with state faults by assuming that all the states are measurable. A novel estimator is utilized for detecting a fault. Upon detection, an online approximator in discrete-time (OLAD) and a robust adaptive term are activated online in the estimator wherein the OLAD learns the unknown fault dynamics while the robust adaptive term ensures asymptotic performance guarantee. A novel update law is proposed for tuning the OLAD parameters. Additionally, by using the parameter update law, time to reach an a priori selected failure threshold is derived for prognostics. Subsequently, the FDP scheme is used to estimate the states and detect faults in nonlinear input-output systems in Paper II and to nonlinear discrete-time systems with both state and sensor faults in Paper III. Upon detection, a novel fault isolation estimator is used to identify the faults in Paper IV. It was shown that certain faults can be accommodated via controller reconfiguration in Paper V. Finally, the performance of the FDP framework is demonstrated via Lyapunov stability analysis and experimentally on the Caterpillar hydraulics test-bed in Paper VI by using an artificial immune system as an OLAD --Abstract, page iv
    • …
    corecore