4,463 research outputs found

    Dynamic estimation of specific fluxes in metabolic networks using non-linear dynamic optimization

    Get PDF

    Design of stable metabolic networks

    Get PDF
    In this work, we propose eigenvalue optimization combined with Lyapunov theory concepts to ensure stability of the Embden—Meyerhof–Parnas pathway, the pentosephosphate pathway, the phosphotransferase system and fermentation reactions of Escherichia coli. We address the design of a metabolic network for the maximization of different metabolite production rates. The first case study focuses on serine production, based on a model that consists of 18 differential equations corresponding to dynamic mass balances for extracellular glucose and intracellular metabolites, and thirty kinetic rate expressions. A second case study addresses the design problem to maximize ethanol production, based on a dynamic model that involves mass balancesfor 25 metabolites and 38 kinetic rate equations. The nonlinear optimization problem including stability constraints has been solved with reduced space Successive Quadratic Programming techniques. Numerical results provide useful insights on the stability properties of the studied kinetic models.Fil: Di Maggio, Jimena Andrea. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: Blanco, Anibal Manuel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: Bandoni, Jose Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; ArgentinaFil: Diaz Ricci, Juan Carlos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - TucumĂĄn. Instituto Superior de Investigaciones BiolĂłgicas. Universidad Nacional de TucumĂĄn. Instituto Superior de Investigaciones BiolĂłgicas; ArgentinaFil: DĂ­az, MarĂ­a Soledad. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Planta Piloto de IngenierĂ­a QuĂ­mica. Universidad Nacional del Sur. Planta Piloto de IngenierĂ­a QuĂ­mica; Argentin

    Coupling metabolic footprinting and flux balance analysis to predict how single gene knockouts perturb microbial metabolism

    Get PDF
    Tese de mestrado. Biologia (BioinformĂĄtica e Biologia Computacional). Universidade de Lisboa, Faculdade de CiĂȘncias, 2012The model organisms Caenorhabditis elegans and E. coli form one of the simplest gut microbe host interaction models. Interventions in the microbe that increase the host longevity including inhibition of folate synthesis have been reported previously. To find novel single gene knockouts with an effect on lifespan, a screen of the Keio collection of E. coli was undertaken, and some of the genes found are directly involved in metabolism. The next step in those specific cases is to understand how these mutations perturb metabolism systematically, so that hypotheses can be generated. For that, I employed dynamic Flux Balance Analysis (dFBA), a constraint-based modeling technique capable of simulating the dynamics of metabolism in a batch culture and making predictions about changes in intracellular flux distribution. Since the specificities of the C. elegans lifespan experiments demand us to culture microbes in conditions differing from most of the published literature on E. coli physiology, novel data must be acquired to characterize and make dFBA simulations as realistic as possible. To do this exchange fluxes were measured using quantitative H NMR Time-Resolved Metabolic Footprinting. Furthermore, I also investigate the combination of TReF and dFBA as a tool in microbial metabolism studies. These approaches were tested by comparing wild type E. coli with one of the knockout strains found, ΔmetL, a knockout of the metL gene which encodes a byfunctional enzyme involved in aspartate and threonine metabolism. I found that the strain exhibits a slower growth rate than the wild type. Model simulation results revealed that reduced homoserine and methionine synthesis, as well as impaired sulfur and folate metabolism are the main effects of this knockout and the reasons for the growth deficiency. These results indicate that there are common mechanisms of the lifespan extension between ΔmetL and inhibition of folate biosynthesis and that the flux balance analysis/metabolic footprinting approach can help us understand the nature of these mechanisms.Os organismos modelo Caenorhabditis elegans e E. coli formam um dos modelos mais simples de interacçÔes entre micrĂłbio do tracto digestivo e hospedeiro. IntervençÔes no micrĂłbio capazes de aumentar a longevidade do hospedeiro, incluindo inibição de sĂ­ntese de folatos, foram reportadas previamente. Para encontrar novas delecçÔes gĂ©nicas do micrĂłbio capazes de aumentar a longevidade do hospedeiro, a colecção Keio de deleçÔes gĂ©nicas de E. coli foi rastreada. Alguns dos genes encontrados participam em processos metabĂłlicos, e nesses casos, o prĂłximpo passo Ă© perceber como as deleçÔes perturbam o metabolismo sistĂ©micamente, para gerar hipĂłteses. Para isso, utilizo dynamic Flux Balance Analysis (dFBA), uma tĂ©cnica de modelação metabĂłlica capaz de fazer previsĂ”es sobre alteraçÔes na distribuição intracelular de fluxos. As especificidades das experiĂȘncias de tempo de vida em C.elegans obrigam-nos a trabalhar em condiçÔes diferentes das usadas na maioria da literatura publicada em fisiologia de E. coli, e para dar o mĂĄximo realismo Ă s simulaçÔes de dFBA novos dados foram adquiridos, utilizando H NMR Time-Resolved Metabolic Footprinting para medir fluxos de troca de metabolitos entre microorganismo e meio de cultura. A combinação de TReF e dFBA como ferramenta de estudo do metabolism microbiano Ă© tambĂ©m investigada. Estas abordagens foram testadas ao comparar E. coli wild-type com uma das estirpes encontradas no rastreio, ΔmetL, knockout do gene metL, que codifica um enzima bifunctional participante no metabolismo de aspartato e treonina, e que exibe uma taxa de crescimento reduzida comparativamente ao wild-type. Os resultados das simulaçÔes revelaram que os principais efeitos da deleção deste gene, e as razĂ”es para a menor taxa de crescimento observada, sĂŁo a produção reduzida de homoserina e metionina e os efeitos que provoca no metabolismo de folatos e enxofre. Estes resultados indicam que hĂĄ mecanismos comuns na extensĂŁo da longevidade causada por esta deleção e inibição de sĂ­ntese de folatos, e que a combinação metabolic footprinting/flux balance analysis pode ajudar-nos a compreender a natureza desses mecanismos

    Reconstruction of dynamic metabolic networks : challenges, limitations and alternative solutions

    Get PDF
    Fundação para a CiĂȘncia e a Tecnologia (FCT)MIT-Portuga

    Formulating genome-scale kinetic models in the post-genome era.

    Get PDF
    The biological community is now awash in high-throughput data sets and is grappling with the challenge of integrating disparate data sets. Such integration has taken the form of statistical analysis of large data sets, or through the bottom-up reconstruction of reaction networks. While progress has been made with statistical and structural methods, large-scale systems have remained refractory to dynamic model building by traditional approaches. The availability of annotated genomes enabled the reconstruction of genome-scale networks, and now the availability of high-throughput metabolomic and fluxomic data along with thermodynamic information opens the possibility to build genome-scale kinetic models. We describe here a framework for building and analyzing such models. The mathematical analysis challenges are reflected in four foundational properties, (i) the decomposition of the Jacobian matrix into chemical, kinetic and thermodynamic information, (ii) the structural similarity between the stoichiometric matrix and the transpose of the gradient matrix, (iii) the duality transformations enabling either fluxes or concentrations to serve as the independent variables and (iv) the timescale hierarchy in biological networks. Recognition and appreciation of these properties highlight notable and challenging new in silico analysis issues
    • 

    corecore