11,595 research outputs found

    Finite Horizon Throughput Maximization for a Wirelessly Powered Device over a Time Varying Channel

    Get PDF
    In this work, we consider an energy harvesting device (EHD) served by an access point with a single antenna that is used for both wireless power transfer (WPT) and data transfer. The objective is to maximize the expected throughput of the EHD over a finite horizon when the channel state information is only available causally. The EHD is energized by WPT for a certain duration, which is subject to optimization, and then, EHD transmits its information bits to the AP until the end of the time horizon by employing optimal dynamic power allocation. The joint optimization problem is modeled as a dynamic programming problem. Based on the characteristic of the problem, we prove that a time dependent threshold type structure exists for the optimal WPT duration, and we obtain closed form solution to the dynamic power allocation in the uplink period.Comment: arXiv admin note: substantial text overlap with arXiv:1804.0183

    Resource Allocation in Wireless Networks with RF Energy Harvesting and Transfer

    Full text link
    Radio frequency (RF) energy harvesting and transfer techniques have recently become alternative methods to power the next generation of wireless networks. As this emerging technology enables proactive replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service (QoS) requirement. This article focuses on the resource allocation issues in wireless networks with RF energy harvesting capability, referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs, followed by a review of a variety of issues regarding resource allocation. Then, we present a case study of designing in the receiver operation policy, which is of paramount importance in the RF-EHNs. We focus on QoS support and service differentiation, which have not been addressed by previous literatures. Furthermore, we outline some open research directions.Comment: To appear in IEEE Networ

    Real-time Optimal Resource Allocation for Embedded UAV Communication Systems

    Get PDF
    We consider device-to-device (D2D) wireless information and power transfer systems using an unmanned aerial vehicle (UAV) as a relay-assisted node. As the energy capacity and flight time of UAVs is limited, a significant issue in deploying UAV is to manage energy consumption in real-time application, which is proportional to the UAV transmit power. To tackle this important issue, we develop a real-time resource allocation algorithm for maximizing the energy efficiency by jointly optimizing the energy-harvesting time and power control for the considered (D2D) communication embedded with UAV. We demonstrate the effectiveness of the proposed algorithms as running time for solving them can be conducted in milliseconds.Comment: 11 pages, 5 figures, 1 table. This paper is accepted for publication on IEEE Wireless Communications Letter
    • …
    corecore