988 research outputs found

    Automatic Affine and Elastic Registration Strategies for Multi-dimensional Medical Images

    Get PDF
    Medical images have been used increasingly for diagnosis, treatment planning, monitoring disease processes, and other medical applications. A large variety of medical imaging modalities exists including CT, X-ray, MRI, Ultrasound, etc. Frequently a group of images need to be compared to one another and/or combined for research or cumulative purposes. In many medical studies, multiple images are acquired from subjects at different times or with different imaging modalities. Misalignment inevitably occurs, causing anatomical and/or functional feature shifts within the images. Computerized image registration (alignment) approaches can offer automatic and accurate image alignments without extensive user involvement and provide tools for visualizing combined images. This dissertation focuses on providing automatic image registration strategies. After a through review of existing image registration techniques, we identified two registration strategies that enhance the current field: (1) an automated rigid body and affine registration using voxel similarity measurements based on a sequential hybrid genetic algorithm, and (2) an automated deformable registration approach based upon a linear elastic finite element formulation. Both methods streamlined the registration process. They are completely automatic and require no user intervention. The proposed registration strategies were evaluated with numerous 2D and 3D MR images with a variety of tissue structures, orientations and dimensions. Multiple registration pathways were provided with guidelines for their applications. The sequential genetic algorithm mimics the pathway of an expert manually doing registration. Experiments demonstrated that the sequential genetic algorithm registration provides high alignment accuracy and is reliable for brain tissues. It avoids local minima/maxima traps of conventional optimization techniques, and does not require any preprocessing such as threshold, smoothing, segmentation, or definition of base points or edges. The elastic model was shown to be highly effective to accurately align areas of interest that are automatically extracted from the images, such as brains. Using a finite element method to get the displacement of each element node by applying a boundary mapping, this method provides an accurate image registration with excellent boundary alignment of each pair of slices and consequently align the entire volume automatically. This dissertation presented numerous volume alignments. Surface geometries were created directly from the aligned segmented images using the Multiple Material Marching Cubes algorithm. Using the proposed registration strategies, multiple subjects were aligned to a standard MRI reference, which is aligned to a segmented reference atlas. Consequently, multiple subjects are aligned to the segmented atlas and a full fMRI analysis is possible

    Automated Image-Based Procedures for Adaptive Radiotherapy

    Get PDF

    Spatiotemporal alignment of in utero BOLD-MRI series

    Get PDF
    Purpose: To present a method for spatiotemporal alignment of in-utero magnetic resonance imaging (MRI) time series acquired during maternal hyperoxia for enabling improved quantitative tracking of blood oxygen level-dependent (BOLD) signal changes that characterize oxygen transport through the placenta to fetal organs. Materials and Methods: The proposed pipeline for spatiotemporal alignment of images acquired with a single-shot gradient echo echo-planar imaging includes 1) signal nonuniformity correction, 2) intravolume motion correction based on nonrigid registration, 3) correction of motion and nonrigid deformations across volumes, and 4) detection of the outlier volumes to be discarded from subsequent analysis. BOLD MRI time series collected from 10 pregnant women during 3T scans were analyzed using this pipeline. To assess pipeline performance, signal fluctuations between consecutive timepoints were examined. In addition, volume overlap and distance between manual region of interest (ROI) delineations in a subset of frames and the delineations obtained through propagation of the ROIs from the reference frame were used to quantify alignment accuracy. A previously demonstrated rigid registration approach was used for comparison. Results: The proposed pipeline improved anatomical alignment of placenta and fetal organs over the state-of-the-art rigid motion correction methods. In particular, unexpected temporal signal fluctuations during the first normoxia period were significantly decreased (P < 0.01) and volume overlap and distance between region boundaries measures were significantly improved (P < 0.01). Conclusion: The proposed approach to align MRI time series enables more accurate quantitative studies of placental function by improving spatiotemporal alignment across placenta and fetal organs.National Institutes of Health (NIH) . Grant Numbers: U01 HD087211 , R01 EB017337 Consejeria de Educacion, Juventud y Deporte de la Comunidad de Madrid (Spain) through the Madrid-MIT M+Vision Consortium

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention

    Variational methods for shape and image registrations.

    Get PDF
    Estimating and analysis of deformation, either rigid or non-rigid, is an active area of research in various medical imaging and computer vision applications. Its importance stems from the inherent inter- and intra-variability in biological and biomedical object shapes and from the dynamic nature of the scenes usually dealt with in computer vision research. For instance, quantifying the growth of a tumor, recognizing a person\u27s face, tracking a facial expression, or retrieving an object inside a data base require the estimation of some sort of motion or deformation undergone by the object of interest. To solve these problems, and other similar problems, registration comes into play. This is the process of bringing into correspondences two or more data sets. Depending on the application at hand, these data sets can be for instance gray scale/color images or objects\u27 outlines. In the latter case, one talks about shape registration while in the former case, one talks about image/volume registration. In some situations, the combinations of different types of data can be used complementarily to establish point correspondences. One of most important image analysis tools that greatly benefits from the process of registration, and which will be addressed in this dissertation, is the image segmentation. This process consists of localizing objects in images. Several challenges are encountered in image segmentation, including noise, gray scale inhomogeneities, and occlusions. To cope with such issues, the shape information is often incorporated as a statistical model into the segmentation process. Building such statistical models requires a good and accurate shape alignment approach. In addition, segmenting anatomical structures can be accurately solved through the registration of the input data set with a predefined anatomical atlas. Variational approaches for shape/image registration and segmentation have received huge interest in the past few years. Unlike traditional discrete approaches, the variational methods are based on continuous modelling of the input data through the use of Partial Differential Equations (PDE). This brings into benefit the extensive literature on theory and numerical methods proposed to solve PDEs. This dissertation addresses the registration problem from a variational point of view, with more focus on shape registration. First, a novel variational framework for global-to-local shape registration is proposed. The input shapes are implicitly represented through their signed distance maps. A new Sumof- Squared-Differences (SSD) criterion which measures the disparity between the implicit representations of the input shapes, is introduced to recover the global alignment parameters. This new criteria has the advantages over some existing ones in accurately handling scale variations. In addition, the proposed alignment model is less expensive computationally. Complementary to the global registration field, the local deformation field is explicitly established between the two globally aligned shapes, by minimizing a new energy functional. This functional incrementally and simultaneously updates the displacement field while keeping the corresponding implicit representation of the globally warped source shape as close to a signed distance function as possible. This is done under some regularization constraints that enforce the smoothness of the recovered deformations. The overall process leads to a set of coupled set of equations that are simultaneously solved through a gradient descent scheme. Several applications, where the developed tools play a major role, are addressed throughout this dissertation. For instance, some insight is given as to how one can solve the challenging problem of three dimensional face recognition in the presence of facial expressions. Statistical modelling of shapes will be presented as a way of benefiting from the proposed shape registration framework. Second, this dissertation will visit th

    Atlas-based segmentation and classification of magnetic resonance brain images

    Get PDF
    A wide range of different image modalities can be found today in medical imaging. These modalities allow the physician to obtain a non-invasive view of the internal organs of the human body, such as the brain. All these three dimensional images are of extreme importance in several domains of medicine, for example, to detect pathologies, follow the evolution of these pathologies, prepare and realize surgical planning with, or without, the help of robot systems or for statistical studies. Among all the medical image modalities, Magnetic Resonance (MR) imaging has become of great interest in many research areas due to its great spatial and contrast image resolution. It is therefore perfectly suited for anatomic visualization of the human body such as deep structures and tissues of the brain. Medical image analysis is a complex task because medical images usually involve a large amount of data and they sometimes present some undesirable artifacts, as for instance the noise. However, the use of a priori knowledge in the analysis of these images can greatly simplify this task. This prior information is usually represented by the reference images or atlases. Modern brain atlases are derived from high resolution cryosections or in vivo images, single subject-based or population-based, and they provide detailed images that may be interactively and easily examined in their digital format in computer assisted diagnosis or intervention. Then, in order to efficiently combine all this information, a battery of registration techniques is emerging based on transformations that bring two medical images into voxel-to-voxel correspondence. One of the main aims of this thesis is to outline the importance of including prior knowledge in the medical image analysis framework and the indispensable role of registration techniques in this task. In order to do that, several applications using atlas information are presented. First, the atlas-based segmentation in normal anatomy is shown as it is a key application of medical image analysis using prior knowledge. It consists of registering the brain images derived from different subjects and modalities within the atlas coordinate system to improve the localization and delineation of the structures of interest. However, the use of an atlas can be problematic in some particular cases where some structures, for instance a tumor or a sulcus, exists in the subject and not in the atlas. In order to solve this limitation of the atlases, a new atlas-based segmentation method for pathological brains is proposed in this thesis as well as a validation method to assess this new approach. Results show that deep structures of the brain can still be efficiently segmented using an anatomic atlas even if they are largely deformed because of a lesion. The importance of including a priori knowledge is also presented in the application of brain tissue classification. The prior information represented by the tissue templates can be included in a brain tissue segmentation approach thanks to the registration techniques. This is another important issue presented in this thesis and it is analyzed through a comparative study of several non-supervised classification techniques. These methods are selected to represent the whole range of prior information that can be used in the classification process: the image intensity, the local spatial model, and the anatomical priors. Results show that the registration between the subject and the tissue templates allows the use of prior information but the accuracy of both the prior information and the registration highly influence the performance of the classification techniques. Another aim of this thesis is to present the concept of dynamic medical image analysis, in which the prior knowledge and the registration techniques are also of main importance. Actually, many medical image applications have the objective of statically analyzing one single image, as for instance in the case of atlas-based segmentation or brain tissue classification. But in other cases the implicit idea of changes detection is present. Intuitively, since the human body is changing continuously, we would like to do the image analysis from a dynamic point of view by detecting these changes, and by comparing them afterwards with templates to know if they are normal. The need of such approaches is even more evident in the case of many brain pathologies such as tumors, multiple sclerosis or degenerative diseases. In these cases, the key point is not only to detect but also to quantify and even characterize the evolving pathology. The evaluation of lesion variations over time can be very useful, for instance in the pharmaceutical research and clinical follow up. Of course, a sequence of images is needed in order to do such an analysis. Two approaches dealing with the idea of change detection are proposed as the last (but not least) issue presented in this work. The first one consists of performing a static analysis of each image forming the data set and, then, of comparing them. The second one consists of analyzing the non-rigid transformation between the sequence images instead of the images itself. Finally, both static and dynamic approaches are illustrated with a potential application: the cortical degeneration study is done using brain tissue segmentation, and the study of multiple sclerosis lesion evolution is performed by non-rigid deformation analysis. In conclusion, the importance of including a priori information encoded in the brain atlases in medical image analysis has been put in evidence with a wide range of possible applications. In the same way, the key role of registration techniques is shown not only as an efficient way to combine all the medical image modalities but also as a main element in the dynamic medical image analysis

    Atlas-based Transfer of Boundary Conditions for Biomechanical Simulation

    Get PDF
    International audienceAn environment composed of different types of living tissues (such as the abdominal cavity) reveals a high complexity of boundary conditions, which are the attachments (e.g. connective tissues, ligaments) connecting different anatomical structures. Together with the material properties, the boundary conditions have a significant influence on the mechanical response of the organs, however corresponding correct me- chanical modeling remains a challenging task, as the connective struc- tures are difficult to identify in certain standard imaging modalities. In this paper, we present a method for automatic modeling of boundary con- ditions in deformable anatomical structures, which is an important step in patient-specific biomechanical simulations. The method is based on a statistical atlas which gathers data defining the connective structures at- tached to the organ of interest. In order to transfer the information stored in the atlas to a specific patient, the atlas is registered to the patient data using a physics-based technique and the resulting boundary conditions are defined according to the mean position and variance available in the atlas. The method is evaluated using abdominal scans of ten patients. The results show that the atlas provides a sufficient information about the boundary conditions which can be reliably transferred to a specific patient. The boundary conditions obtained by the atlas-based transfer show a good match both with actual segmented boundary conditions and in terms of mechanical response of deformable organs
    • …
    corecore