7,630 research outputs found

    Study of the urban evolution of Brasilia with the use of LANDSAT data

    Get PDF
    The urban growth of Brasilia within the last ten years is analyzed with special emphasis on the utilization of remote sensing orbital data and automatic image processing. The urban spatial structure and the monitoring of its temporal changes were focused in a whole and dynamic way by the utilization of MSS-LANDSAT images for June 1973, 1978 and 1983. In order to aid data interpretation, a registration algorithm implemented at the Interactive Multispectral Image Analysis System (IMAGE-100) was utilized aiming at the overlap of multitemporal images. The utilization of suitable digital filters, combined with the images overlap, allowed a rapid identification of areas of possible urban growth and oriented the field work. The results obtained permitted an evaluation of the urban growth of Brasilia, taking as reference the proposed stated for the construction of the city

    Active damping application to the shuttle RMS

    Get PDF
    Control Structure Interaction (CSI) is a relatively new technology developed over the last 10 to 15 years for application to large flexible space vehicles. The central issue is recognition that high performance control systems necessary for good spacecraft performance may adversely interact with the dynamics of the spacecraft structures, a problem increasingly aggravated by the large size and reduced stiffness of modern spacecraft structural designs. The CSI analysis and design methods were developed to avoid interactions while maintaining spacecraft performance without exceeding structural capabilities, but they remain largely unvalidated by hardware experiments or demonstrations, particularly in-space flight demonstrations. One recent proposal for a low cost flight validation of CSI technology is to demonstrate active damping augmentation of the Space Shuttle Remote Manipulator System (RMS). An analytical effort to define the potential for such an active damping augmentation demonstration to improve the structural dynamic response of the RMS following payload maneuvers is described. It is hoped that this study will lead to an actual inflight CSI test with the RMS using existing shuttle hardware to the maximum extent possible. By using the existing hardware, the flight demonstration results may eventually be of direct benefit to actual Space Shuttle RMS operations, especially during the construction of the Space Station Freedom

    An overview of the space remote manipulator system

    Get PDF
    An overview of the system requirements and performance of the Shuttle Remote Manipulator System (SRMS) is given. Data on some of the mechanical design considerations that were necessary during the development program are presented. The operational success of both the Orbiter and the SRMS during flights of Space Transportation System-2, -3, and -4 is ample evidence that the SRMS performed as expected and as desired. While some minor improvements were made in the follow-on production systems, one of which was delivered and two of which are currently under construction, the system design did not change significantly. Thus, information given is applicable to all the manipulator systems

    The KALI multi-arm robot programming and control environment

    Get PDF
    The KALI distributed robot programming and control environment is described within the context of its use in the Jet Propulsion Laboratory (JPL) telerobot project. The purpose of KALI is to provide a flexible robot programming and control environment for coordinated multi-arm robots. Flexibility, both in hardware configuration and software, is desired so that it can be easily modified to test various concepts in robot programming and control, e.g., multi-arm control, force control, sensor integration, teleoperation, and shared control. In the programming environment, user programs written in the C programming language describe trajectories for multiple coordinated manipulators with the aid of KALI function libraries. A system of multiple coordinated manipulators is considered within the programming environment as one motion system. The user plans the trajectory of one controlled Cartesian frame associated with a motion system and describes the positions of the manipulators with respect to that frame. Smooth Cartesian trajectories are achieved through a blending of successive path segments. The manipulator and load dynamics are considered during trajectory generation so that given interface force limits are not exceeded

    Six degree of freedom manual controls study report

    Get PDF
    The feasibility of using degree of freedom manual controls in space in an on orbit environment was determined. Several six degree of freedom controls were tested in a laboratory environment, and replica controls were used to control robot arms. The selection of six degrees of freedom as a design goal was based on the fact that six degrees are sufficient to define the location and orientation of a rigid body in space

    Experimental validation of docking and capture using space robotics testbeds

    Get PDF
    This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations

    Control of free-flying space robot manipulator systems

    Get PDF
    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail

    Experiments in cooperative manipulation: A system perspective

    Get PDF
    In addition to cooperative dynamic control, the system incorporates real time vision feedback, a novel programming technique, and a graphical high level user interface. By focusing on the vertical integration problem, not only these subsystems are examined, but also their interfaces and interactions. The control system implements a multi-level hierarchical structure; the techniques developed for operator input, strategic command, and cooperative dynamic control are presented. At the highest level, a mouse-based graphical user interface allows an operator to direct the activities of the system. Strategic command is provided by a table-driven finite state machine; this methodology provides a powerful yet flexible technique for managing the concurrent system interactions. The dynamic controller implements object impedance control; an extension of Nevill Hogan's impedance control concept to cooperative arm manipulation of a single object. Experimental results are presented, showing the system locating and identifying a moving object catching it, and performing a simple cooperative assembly. Results from dynamic control experiments are also presented, showing the controller's excellent dynamic trajectory tracking performance, while also permitting control of environmental contact force

    Discrete Cosserat Approach for Multi-Section Soft Robots Dynamics

    Full text link
    In spite of recent progress, soft robotics still suffers from a lack of unified modeling framework. Nowadays, the most adopted model for the design and control of soft robots is the piece-wise constant curvature model, with its consolidated benefits and drawbacks. In this work, an alternative model for multisection soft robots dynamics is presented based on a discrete Cosserat approach, which, not only takes into account shear and torsional deformations, essentials to cope with out-of-plane external loads, but also inherits the geometrical and mechanical properties of the continuous Cosserat model, making it the natural soft robotics counterpart of the traditional rigid robotics dynamics model. The soundness of the model is demonstrated through extensive simulation and experimental results for both plane and out-of-plane motions.Comment: 13 pages, 9 figure

    Dynamic simulation of task constrained of a rigid-flexible manipulator

    Full text link
    A rigid-flexible manipulator may be assigned tasks in a moving environment where the winds or vibrations affect the position and/or orientation of surface of operation. Consequently, losses of the contact and perhaps degradation of the performance may occur as references are changed. When the environment is moving, knowledge of the angle α between the contact surface and the horizontal is required at every instant. In this paper, different profiles for the time varying angle α are proposed to investigate the effect of this change into the contact force and the joint torques of a rigid-flexible manipulator. The coefficients of the equation of the proposed rotating surface are changing with time to determine the new X and Y coordinates of the moving surface as the surface rotates
    corecore