170 research outputs found

    pDCell: an End-to-End Transport Protocol for Mobile Edge Computing Architectures

    Get PDF
    Pendiente publicación 2019To deal with increasingly demanding services and the rapid growth in number of devices and traffic, 5G and beyond mobile networks need to provide extreme capacity and peak data rates at very low latencies. Consequently, applications and services need to move closer to the users into so-called edge data centers. At the same time, there is a trend to virtualize core and radio access network functionalities and bring them to edge data centers as well. However, as is known from conventional data centers, legacy transport protocols such as TCP are vastly suboptimal in such a setting. In this work, we present pDCell, a transport design for mobile edge computing architectures that extends data center transport approaches to the mobile network domain. Specifically, pDCell ensures that data traffic from application servers arrives at virtual radio functions (i.e., C-RAN Central Units) timely to (i) minimize queuing delays and (ii) to maximize cellular network utilization. We show that pDCell significantly improves flow completion times compared to conventional transport protocols like TCP and data center transport solutions, and is thus an essential component for future mobile networks.This work is partially supported by the European Research Council grant ERC CoG 617721, the Ramon y Cajal grant from the Spanish Ministry of Economy and Competitiveness RYC-2012-10788, by the European Union H2020-ICT grant 644399 (MONROE), by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586) and the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919). Further, the work of Dr. Kogan is partially supported by a grant from the Cisco University Research Program Fund, an advised fund of Silicon Valley Community Foundation.No publicad

    S-RLNC based MAC Optimization for Multimedia Data Transmission over LTE/LTE-A Network

    Get PDF
    The high pace emergence in communication systems and associated demands has triggered academia-industries to achieve more efficient solution for Quality of Service (QoS) delivery for which recently introduced Long Term Evolution (LTE) or LTE-Advanced has been found as a promising solution. However, enabling QoS and Quality of Experience (QoE) delivery for multimedia data over LTE has always been a challenging task. QoS demands require reliable data transmission with minimum signalling overheads, computational complexity, minimum latency etc, for which classical Hybrid Automatic Repeat Request (HREQ) based LTE-MAC is not sufficient. To alleviate these issues, in this paper a novel and robust Multiple Generation Mixing (MGM) assisted Systematic Random Linear Network Coding (S-RLNC) model is developed to be used at the top of LTE MAC protocol stack for multimedia data transmission over LTE/LTE-A system. Our proposed model incorporated interleaving and coding approach along with MGM to ensure secure, resource efficient and reliable multiple data delivery over LTE systems. The simulation results reveal that our proposed S-RLNC-MGM based MAC can ensure QoS/QoE delivery over LTE systems for multimedia data communication

    Active queue management as quality of service enabler for 5G networks

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.5G is envisioned as the key technology for guaranteeing low-latency wireless services. Packets will be marked with QoS Flow Indicators (QFI) for different forwarding treatment. 3GPP defines the end-to-end delay limits, but leaves the QoS provisioning methods as implementation dependent. Different services with different constraints will inevitably share queues at some network entity. On the one hand, maintaining the shared queues uncongested will guarantee a rapid packet delivery to the subsequent entity. A brief sojourn time is indispensable for an on time low-latency priority traffic delivery. On the other hand, if shared queues are maintained undersized, throughput will be squandered. In this paper, we propose the use of AQM techniques in 5G networks to guarantee delay limits of QoS flows. Through the evaluation of realistic delay-sensitive and background traffic, we compare different possible solutions. We show that AQM mechanisms together with limited queues, maintain the system uncongested, which reduces drastically the delay, while effectively achieving the maximum possible throughput.Peer ReviewedPostprint (author's final draft

    Survey on 5G Second Phase RAN Architectures and Functional Splits

    Get PDF
    The Radio Access Network (RAN) architecture evolves with different generations of mobile communication technologies and forms an indispensable component of the mobile network architecture. The main component of the RAN infrastructure is the base station, which includes a Radio Frequency unit and a baseband unit. The RAN is a collection of base stations connected to the core network to provide coverage through one or more radio access technologies. The advancement towards cloud native networks has led to centralizing the baseband processing of radio signals. There is a trade-off between the advantages of RAN centralization (energy efficiency, power cost reduction, and the cost of the fronthaul) and the complexity of carrying traffic between the data processing unit and distributed antennas. 5G networks hold high potential for adopting the centralized architecture to reduce maintenance costs while reducing deployment costs and improving resilience, reliability, and coordination. Incorporating the concept of virtualization and centralized RAN architecture enables to meet the overall requirements for both the customer and Mobile Network Operator. Functional splitting is one of the key enablers for 5G networks. It supports Centralized RAN, virtualized Radio Access Network, and the recent Open Radio Access Networks. This survey provides a comprehensive tutorial on the paradigms of the RAN architecture evolution, its key features, and implementation challenges. It provides a thorough review of the 3rd Generation Partnership Project functional splitting complemented by associated challenges and potential solutions. The survey also presents an overview of the fronthaul and its requirements and possible solutions for implementation, algorithms, and required tools whilst providing a vision of the evaluation beyond 5G second phase.info:eu-repo/semantics/submittedVersio

    5GAuRA. D3.3: RAN Analytics Mechanisms and Performance Benchmarking of Video, Time Critical, and Social Applications

    Get PDF
    5GAuRA deliverable D3.3.This is the final deliverable of Work Package 3 (WP3) of the 5GAuRA project, providing a report on the project’s developments on the topics of Radio Access Network (RAN) analytics and application performance benchmarking. The focus of this deliverable is to extend and deepen the methods and results provided in the 5GAuRA deliverable D3.2 in the context of specific use scenarios of video, time critical, and social applications. In this respect, four major topics of WP3 of 5GAuRA – namely edge-cloud enhanced RAN architecture, machine learning assisted Random Access Channel (RACH) approach, Multi-access Edge Computing (MEC) content caching, and active queue management – are put forward. Specifically, this document provides a detailed discussion on the service level agreement between tenant and service provider in the context of network slicing in Fifth Generation (5G) communication networks. Network slicing is considered as a key enabler to 5G communication system. Legacy telecommunication networks have been providing various services to all kinds of customers through a single network infrastructure. In contrast, by deploying network slicing, operators are now able to partition one network into individual slices, each with its own configuration and Quality of Service (QoS) requirements. There are many applications across industry that open new business opportunities with new business models. Every application instance requires an independent slice with its own network functions and features, whereby every single slice needs an individual Service Level Agreement (SLA). In D3.3, we propose a comprehensive end-to-end structure of SLA between the tenant and the service provider of sliced 5G network, which balances the interests of both sides. The proposed SLA defines reliability, availability, and performance of delivered telecommunication services in order to ensure that right information is delivered to the right destination at right time, safely and securely. We also discuss the metrics of slicebased network SLA such as throughput, penalty, cost, revenue, profit, and QoS related metrics, which are, in the view of 5GAuRA, critical features of the agreement.Peer ReviewedPostprint (published version

    Optimizations in Heterogeneous Mobile Networks

    Get PDF

    Quality of service optimization of multimedia traffic in mobile networks

    Get PDF
    Mobile communication systems have continued to evolve beyond the currently deployed Third Generation (3G) systems with the main goal of providing higher capacity. Systems beyond 3G are expected to cater for a wide variety of services such as speech, data, image transmission, video, as well as multimedia services consisting of a combination of these. With the air interface being the bottleneck in mobile networks, recent enhancing technologies such as the High Speed Downlink Packet Access (HSDPA), incorporate major changes to the radio access segment of 3G Universal Mobile Telecommunications System (UMTS). HSDPA introduces new features such as fast link adaptation mechanisms, fast packet scheduling, and physical layer retransmissions in the base stations, necessitating buffering of data at the air interface which presents a bottleneck to end-to-end communication. Hence, in order to provide end-to-end Quality of Service (QoS) guarantees to multimedia services in wireless networks such as HSDPA, efficient buffer management schemes are required at the air interface. The main objective of this thesis is to propose and evaluate solutions that will address the QoS optimization of multimedia traffic at the radio link interface of HSDPA systems. In the thesis, a novel queuing system known as the Time-Space Priority (TSP) scheme is proposed for multimedia traffic QoS control. TSP provides customized preferential treatment to the constituent flows in the multimedia traffic to suit their diverse QoS requirements. With TSP queuing, the real-time component of the multimedia traffic, being delay sensitive and loss tolerant, is given transmission priority; while the non-real-time component, being loss sensitive and delay tolerant, enjoys space priority. Hence, based on the TSP queuing paradigm, new buffer managementalgorithms are designed for joint QoS control of the diverse components in a multimedia session of the same HSDPA user. In the thesis, a TSP based buffer management algorithm known as the Enhanced Time Space Priority (E-TSP) is proposed for HSDPA. E-TSP incorporates flow control mechanisms to mitigate congestion in the air interface buffer of a user with multimedia session comprising real-time and non-real-time flows. Thus, E-TSP is designed to provide efficient network and radio resource utilization to improve end-to-end multimedia traffic performance. In order to allow real-time optimization of the QoS control between the real-time and non-real-time flows of the HSDPA multimedia session, another TSP based buffer management algorithm known as the Dynamic Time Space Priority (D-TSP) is proposed. D-TSP incorporates dynamic priority switching between the real-time and non-real-time flows. D-TSP is designed to allow optimum QoS trade-off between the flows whilst still guaranteeing the stringent real-time component’s QoS requirements. The thesis presents results of extensive performance studies undertaken via analytical modelling and dynamic network-level HSDPA simulations demonstrating the effectiveness of the proposed TSP queuing system and the TSP based buffer management schemes
    • …
    corecore