28 research outputs found

    A survey on Bluetooth multi-hop networks

    Get PDF
    Bluetooth was firstly announced in 1998. Originally designed as cable replacement connecting devices in a point-to-point fashion its high penetration arouses interest in its ad-hoc networking potential. This ad-hoc networking potential of Bluetooth is advertised for years - but until recently no actual products were available and less than a handful of real Bluetooth multi-hop network deployments were reported. The turnaround was triggered by the release of the Bluetooth Low Energy Mesh Profile which is unquestionable a great achievement but not well suited for all use cases of multi-hop networks. This paper surveys the tremendous work done on Bluetooth multi-hop networks during the last 20 years. All aspects are discussed with demands for a real world Bluetooth multi-hop operation in mind. Relationships and side effects of different topics for a real world implementation are explained. This unique focus distinguishes this survey from existing ones. Furthermore, to the best of the authors’ knowledge this is the first survey consolidating the work on Bluetooth multi-hop networks for classic Bluetooth technology as well as for Bluetooth Low Energy. Another individual characteristic of this survey is a synopsis of real world Bluetooth multi-hop network deployment efforts. In fact, there are only four reports of a successful establishment of a Bluetooth multi-hop network with more than 30 nodes and only one of them was integrated in a real world application - namely a photovoltaic power plant. © 2019 The Author

    Energy-efficient bluetooth scatternet formation based on device and link characteristics

    Get PDF
    Cataloged from PDF version of article.Bluetooth is a promising ad hoc networking technology. Although construction and operation of piconets are well defined in Bluetooth specifications, there is no unique standard for scatternet formation and operation. In this thesis, we propose a distributed and energy-efficient Bluetooth Scatternet Formation algorithm based on Device and Link characteristics (SF-DeviL) that is compatible with Bluetooth specifications. SF-DeviL handles energy efficiency using classes of devices, battery levels and the received signal strengths. SF-DeviL forms scatternets with tree topologies that are robust to battery depletions, where devices are arranged in an hierarchical order in terms of battery power and traffic generation rate. SF-DeviL is dynamic in the sense that the topology is reconfigured when battery levels are depleted, thereby increasing the lifetime of the scatternet. Unlike many of the algorithms in the literature SF-DeviL is also multihop, i.e., there is no requirement for each node to be in the transmission range of all other nodes.Pamuk, CananM.S

    Message forwarding techniques in Bluetooth enabled opportunistic communication environment

    Get PDF
    These days, most of the mobile phones are smart enough with computer like intelligence and equipped with multiple communication technologies such as Bluetooth, wireless LAN, GPRS and GSM. Different communication medium on single device have unlocked the new horizon of communication means. Modern mobile phones are not only capable of using traditional way of communication via GSM or GPRS; but, also use wireless LANs using access points where available. Among these communication means, Bluetooth technology is very intriguing and unique in nature. Any two devices equipped with Bluetooth technology can communicate directly due to their unique IDs in the world. This is opposite to GSM or Wireless LAN technology; where devices are dependent on infrastructure of service providers and have to pay for their services. Due to continual advancement in the field of mobile technology, mobile ad-hoc network seems to be more realised than ever using Bluetooth. In traditional mobile ad-hoc networks (MANETs), before information sharing, devices have partial or full knowledge of routes to the destinations using ad-hoc routing protocols. This kind of communication can only be realised if nodes follow the certain pattern. However, in reality mobile ad-hoc networks are highly unpredictable, any node can join or leave network at any time, thus making them risky for effective communication. This issue is addressed by introducing new breed of ad-hoc networking, known as opportunistic networks. Opportunistic networking is a concept that is evolved from mobile ad-hoc networking. In opportunistic networks nodes have no prior knowledge of routes to intended destinations. Any node in the network can be used as potential forwarder with the exception of taking information one step closer to intended destination. The forwarding decision is based on the information gathered from the source node or encountering node. The opportunistic forwarding can only be achieved if message forwarding is carried out in store and forward fashion. Although, opportunistic networks are more flexible than traditional MANETs, however, due to little insight of network, it poses distinct challenges such as intermittent connectivity, variable delays, short connection duration and dynamic topology. Addressing these challenges in opportunistic network is the basis for developing new and efficient protocols for information sharing. The aim of this research is to design different routing/forwarding techniques for opportunistic networks to improve the overall message delivery at destinations while keeping the communication cost very low. Some assumptions are considered to improved directivity of message flow towards intended destinations. These assumptions exploit human social relationships analogies, approximate awareness of the location of nodes in the network and use of hybrid communication by combining several routing concept to gain maximum message directivity. Enhancement in message forwarding in opportunistic networks can be achieved by targeting key nodes that show high degree of influence, popularity or knowledge inside the network. Based on this observation, this thesis presents an improved version of Lobby Influence (LI) algorithm called as Enhanced Lobby Influence (ELI). In LI, the forwarding decision is based on two important factors, popularity of node and popularity of node’s neighbour. The forwarding decision of Enhanced Lobby Influence not only depends on the intermediate node selection criteria as defined in Lobby Influence but also based on the knowledge of previously direct message delivery of intended destination. An improvement can be observed if nodes are aware of approximate position of intended destinations by some communication means such as GPS, GSM or WLAN access points. With the knowledge of nodes position in the network, high message directivity can be achieved by using simple concepts of direction vectors. Based on this observation, this research presents another new algorithm named as Location-aware opportunistic content forwarding (LOC). Last but not least, this research presents an orthodox yet unexplored approach for efficient message forwarding in Bluetooth communication environment, named as Hybrid Content Forwarding (HCF). The new approach combines the characteristics of social centrality based forwarding techniques used in opportunistic networks with traditional MANETs protocols used in Bluetooth scatternets. Simulation results show that a significant increase in delivery radio and cost reduction during content forwarding is observed by deploying these proposed algorithms. Also, comparison with existing technique shows the efficiency of using the new schemes

    A PROTOCOL SUITE FOR WIRELESS PERSONAL AREA NETWORKS

    Get PDF
    A Wireless Personal Area Network (WPAN) is an ad hoc network that consists of devices that surround an individual or an object. Bluetooth® technology is especially suitable for formation of WPANs due to the pervasiveness of devices with Bluetooth® chipsets, its operation in the unlicensed Industrial, Scientific, Medical (ISM) frequency band, and its interference resilience. Bluetooth® technology has great potential to become the de facto standard for communication between heterogeneous devices in WPANs. The piconet, which is the basic Bluetooth® networking unit, utilizes a Master/Slave (MS) configuration that permits only a single master and up to seven active slave devices. This structure limitation prevents Bluetooth® devices from directly participating in larger Mobile Ad Hoc Networks (MANETs) and Wireless Personal Area Networks (WPANs). In order to build larger Bluetooth® topologies, called scatternets, individual piconets must be interconnected. Since each piconet has a unique frequency hopping sequence, piconet interconnections are done by allowing some nodes, called bridges, to participate in more than one piconet. These bridge nodes divide their time between piconets by switching between Frequency Hopping (FH) channels and synchronizing to the piconet\u27s master. In this dissertation we address scatternet formation, routing, and security to make Bluetooth® scatternet communication feasible. We define criteria for efficient scatternet topologies, describe characteristics of different scatternet topology models as well as compare and contrast their properties, classify existing scatternet formation approaches based on the aforementioned models, and propose a distributed scatternet formation algorithm that efficiently forms a scatternet topology and is resilient to node failures. We propose a hybrid routing algorithm, using a bridge link agnostic approach, that provides on-demand discovery of destination devices by their address or by the services that devices provide to their peers, by extending the Service Discovery Protocol (SDP) to scatternets. We also propose a link level security scheme that provides secure communication between adjacent piconet masters, within what we call an Extended Scatternet Neighborhood (ESN)

    Can Bluetooth Succeed as a Large-Scale Ad Hoc Networking Technology?

    Get PDF
    We investigate issues that Bluetooth may face in evolving from a simple wire replacement to a large-scale ad hoc networking technology. We do so by examining the efficacy of Bluetooth in establishing a connected topology, which is a basic requirement of any networking technology. We demonstrate that Bluetooth experiences some fundamental algorithmic challenges in accomplishing this seemingly simple task. Specifically, deciding whether there exists at least one connected topology that satisfies the Bluetooth constraints is NP-hard. Several implementation problems also arise due to the internal structure of the Bluetooth protocol stack. All these together degrade the performance of the network, or increase the complexity of operation. Given the availability of efficient substitute technologies, Bluetooth’s use may end up being limited to small ad hoc networks

    Self-organizing Bluetooth scatternets

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 71-73).There is increasing interest in wireless ad hoc networks built from portable devices equipped with short-range wireless network interfaces. This thesis addresses issues related to internetworking such networks to form larger "scatternets." Within the constraints imposed by the emerging standard Bluetooth link layer and MAC protocol, we develop a set of online algorithms to form scatternets and to schedule point-to-point communication links. Our efficient online topology formation algorithm, called TSF (Tree Scatternet Formation), builds scatternets by connecting nodes into a tree structure that simplifies packet routing and scheduling. Unlike earlier works, our design does not restrict the number of nodes in the scatternet, and also allows nodes to arrive and leave at arbitrary times, incrementally building the topology and healing partitions when they occur. We have developed a Bluetooth simulator in ns which includes most aspects of the entire Bluetooth protocol stack. It was used to derive simulation results that show that TSF has low latencies in link establishment, tree formation and partition healing. All of these grow logarithmically with the number of nodes in the scatternet. Furthermore, TSF generates tree topologies where the average path length between any node pair grows logarithmically with the size of the scatternet. Our scheduling algorithm, called TSS (Tree Scatternet Scheduling), takes advantage of the tree structure of the scatternets constructed by TSF. Unlike previous works, TSS coordinates one-hop neighbors effectively to increase the overall performance of the scatternet. In addition, TSS is robust and responsive to network conditions, adapting the inter-piconet link schedule effectively based on varying workload conditions. We demonstrate that TSS has good performance on throughput and latency under various traffic loads.by Godfrey Tan.S.M

    Distributed algorithms for dynamic topology construction and their applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 155-162).(cont.) of piconets is close to optimal, and any device is a member of at most two piconets.We introduce new distributed algorithms that dynamically construct network topologies. These algorithms not only adapt to dynamic topologies where nodes join and leave, but also actively set up and remove links between the nodes, to achieve certain global graph properties. First, we present a novel distributed algorithm for constructing overlay networks that are composed of d Hamilton cycles. The protocol is decentralized as no globally-known server is required. With high probability, the constructed topologies are expanders with O(logd n) diameters and ... second largest eigenvalues. Our protocol exploits the properties of random walks on expanders. A new node can join the network in O(logd n) time with O(dlogd n) messages. A node can leave in O(1) time with O(d) messages. Second, we investigate a layered construction of the random expander networks that can implement a distributed hash table. Layered expanders can achieve degree-optimal routing at O(log n/log log n) time, where each node has O(log n) neighbors. We also analyze a self-balancing scheme for the layered networks. Third, we study the resource discovery problem, in which a network of machines discover one another by making network connections. We present two randomized algorithms to solve the resource discovery problem in O(log n) time. Fourth, we apply the insight gained from the resource discovery algorithms on general networks to ad hoc wireless networks. A Bluetooth ad hoc network can be formed by interconnecting piconets into scatternets. We present and analyze a new randomized distributed protocol for Bluetooth scatternet formation. We prove that our protocol achieves O(log n) time complexity and O(n) message complexity. In the scatternets formed by our protocol, the numberby Ching Law.Ph.D

    Improving forwarding mechanisms for mobile personal area networks

    Get PDF
    This thesis presents novel methods for improving forwarding mechanisms for personal area networks. Personal area networks are formed by interconnecting personal devices such as personal digital assistants, portable multimedia devices, digital cameras and laptop computers, in an ad hoc fashion. These devices are typically characterised by low complexity hardware, low memory and are usually batterypowered. Protocols and mechanisms developed for general ad hoc networking cannot be directly applied to personal area networks as they are not optimised to suit their specific constraints. The work presented herein proposes solutions for improving error control and routing over personal area networks, which are very important ingredients to the good functioning of the network. The proposed Packet Error Correction (PEC) technique resends only a subset of the transmitted packets, thereby reducing the overhead, while ensuring improved error rates. PEC adapts the number of re-transmissible packets to the conditions of the channel so that unnecessary retransmissions are avoided. It is shown by means of computer simulation that PEC behaves better, in terms of error reduction and overhead, than traditional error control mechanisms, which means that it is adequate for low-power personal devices. The proposed C2HR routing protocol, on the other hand, is designed such that the network lifetime is maximised. This is achieved by forwarding packets through the most energy efficient paths. C2HR is a hybrid routing protocol in the sense that it employs table-driven (proactive) as well as on-demand (reactive) components. Proactive routes are the primary routes, i.e., packets are forwarded through those paths when the network is stable; however, in case of failures, the protocol searches for alternative routes on-demand, through which data is routed temporarily. The advantage of C2HR is that data can still be forwarded even when routing is re-converging, thereby increasing the throughput. Simulation results show that the proposed routing method is more energy efficient than traditional least hops routing, and results in higher data throughput. C2HR relies on a network leader for collecting and distributing topology information, which in turn requires an estimate of the underlying topology. Thus, this thesis also proposes a new cooperative leader election algorithm and techniques for estimating network characteristics in mobile environments. The proposed solutions are simulated under various conditions and demonstrate appreciable behaviour

    Bluetooth Enabled Ad-hoc Networks: Performance Evaluation of a Self-healing Scatternet Formation Protocol

    Get PDF
    Bluetooth wireless technology is a robust short-range communications system designed for low power (10 meter range) and low cost. It operates in the 2.4 GHz Industrial Scientific Medical (ISM) band and it employs two techniques for minimizing interference: a frequency hopping scheme which nominally splits the 2.400 - 2.485 GHz band in 79 frequency channels and a time division duplex (TDD) scheme which is used to switch to a new frequency channel on 625 μs boundaries. During normal operation a Bluetooth device will be active on a different frequency channel every 625 μs, thus minimizing the chances of continuous interference impacting the performance of the system. The smallest unit of a Bluetooth network is called a piconet, and can have a maximum of eight nodes. Bluetooth devices must assume one of two roles within a piconet, master or slave, where the master governs quality of service and the frequency hopping schedule within the piconet and the slave follows the master’s schedule. A piconet must have a single master and up to 7 active slaves. By allowing devices to have roles in multiple piconets through time multiplexing, i.e. slave/slave or master/slave, the Bluetooth technology allows for interconnecting multiple piconets into larger networks called scatternets. The Bluetooth technology is explored in the context of enabling ad-hoc networks. The Bluetooth specification provides flexibility in the scatternet formation protocol, outlining only the mechanisms necessary for future protocol implementations. A new protocol for scatternet formation and maintenance - mscat - is presented and its performance is evaluated using a Bluetooth simulator. The free variables manipulated in this study include device activity and the probabilities of devices performing discovery procedures. The relationship between the role a device has in the scatternet and it’s probability of performing discovery was examined and related to the scatternet topology formed. The results show that mscat creates dense network topologies for networks of 30, 50 and 70 nodes. The mscat protocol results in approximately a 33% increase in slaves/piconet and a reduction of approximately 12.5% of average roles/node. For 50 node scenarios the set of parameters which creates the best determined outcome is unconnected node inquiry probability (UP) = 10%, master node inquiry probability (MP) = 80% and slave inquiry probability (SP) = 40%. The mscat protocol extends the Bluetooth specification for formation and maintenance of scatternets in an ad-hoc network
    corecore