451 research outputs found

    CMOS VLSI circuits for imaging

    Get PDF

    Voltage drop tolerance by adaptive voltage scaling using clock-data compensation

    Get PDF
    Proyecto de Graduación (Maestría en Ingeniería en Electrónica) Instituto Tecnológico de Costa Rica, Escuela de Ingeniería Electrónica, 2019.El ruido de alta frecuencia en la red de alimentación compromete el rendimiento y la eficiencia energética de los sistemas electrónicos con microprocesadores, restringiendo la frecuencia máxima de operación de los sistemas y disminuyendo la confiabilidad de los dispositivos. La frecuencia máxima será determinada por la ruta de datos más crítica (la ruta de datos más lenta). De esta manera, es necesario configurar una banda de guarda para tolerar caídas de voltaje sin tener ningún problema de ejecución, pero sacrificando el rendimiento eléctrico. Este trabajo evalúa el impacto de la caída de voltaje en el rendimiento de los circuitos CMOS de alta densidad, estableciendo un conjunto de casos de prueba que contienen diferentes configuraciones de circuitos. Se desarrolló una técnica adaptable y escalable para mejorar la tolerancia a la caída de voltaje en los circuitos CMOS a través del escalado adaptativo, aprovechando el efecto de compensación de datos del reloj. La solución propuesta se validó aplicándola a diferentes casos de prueba en una tecnología FinFet-CMOS a nivel de simulación del diseño físico.High-frequency power supply noise compromises performance and energy efficiency of microprocessor-based products, restricting the maximum frequency of operation for electronic systems and decreasing device reliability. The maximum frequency is going to be determine by the most critical data path (the slowest data path). In this way, a guard band needs to be set in order to tolerate voltage drops without having any execution problem, but leading to a performance reduction. This work evaluates the impact of voltage drop in the performance of CMOS circuits by establishing a set of test cases containing different circuit configurations. An adaptive and scalable technique is proposed to enhance voltage drop tolerance in CMOS circuits through adaptive scaling, taking advantage of the clock-data compensation effect. The proposed solution is validated by applying it to different test cases in a FinFet CMOS technology at a post-layout simulation level

    inSense: A Variation and Fault Tolerant Architecture for Nanoscale Devices

    Get PDF
    Transistor technology scaling has been the driving force in improving the size, speed, and power consumption of digital systems. As devices approach atomic size, however, their reliability and performance are increasingly compromised due to reduced noise margins, difficulties in fabrication, and emergent nano-scale phenomena. Scaled CMOS devices, in particular, suffer from process variations such as random dopant fluctuation (RDF) and line edge roughness (LER), transistor degradation mechanisms such as negative-bias temperature instability (NBTI) and hot-carrier injection (HCI), and increased sensitivity to single event upsets (SEUs). Consequently, future devices may exhibit reduced performance, diminished lifetimes, and poor reliability. This research proposes a variation and fault tolerant architecture, the inSense architecture, as a circuit-level solution to the problems induced by the aforementioned phenomena. The inSense architecture entails augmenting circuits with introspective and sensory capabilities which are able to dynamically detect and compensate for process variations, transistor degradation, and soft errors. This approach creates ``smart\u27\u27 circuits able to function despite the use of unreliable devices and is applicable to current CMOS technology as well as next-generation devices using new materials and structures. Furthermore, this work presents an automated prototype implementation of the inSense architecture targeted to CMOS devices and is evaluated via implementation in ISCAS \u2785 benchmark circuits. The automated prototype implementation is functionally verified and characterized: it is found that error detection capability (with error windows from \approx30-400ps) can be added for less than 2\% area overhead for circuits of non-trivial complexity. Single event transient (SET) detection capability (configurable with target set-points) is found to be functional, although it generally tracks the standard DMR implementation with respect to overheads

    5-Bit Dual-Slope Analog-to-Digital Converter-Based Time-to-Digital Converter Chip Design in CMOS Technology

    Get PDF
    Time-to-Digital Converters (TDC) have gained increasing importance in modern implementations of mixed-signal, data-acquisition and processing interfaces and are used to perform high precision time intervals in systems that incorporate Time-of-Flight (ToF) or Time-of-Arrival (ToA) measurements. The linearity of TDCs is very crucial since most Digital Signal Processing (DSP) systems require very linear inputs to achieve high accuracy. In this work, a TDC has been designed in the 0.5 μm n-well CMOS process that can be used for on-chip integration and in applications requiring high linearity. This TDC used a Dual-Slope-ADC-based architecture for the time-to-digital conversion and consists of the following three main sub-circuits: a time-to-voltage conversion part, an integrating part and digital circuitry. The design is operated with ±2.5V supply voltage and the digital circuitry, consisting of two digital counters and an adder, are operated with a clock frequency of 13MHz. The design of the TDC is discussed and simulated and experimental test results and linearity performance of the fabricated TDC are also presented

    Custom Integrated Circuits

    Get PDF
    Contains reports on nine research projects.Analog Devices, Inc.International Business Machines, Inc.Joint Services Electronics Program (Contract DAALO03-86-K-0002)U.S. Air Force - Office of Scientific Research (Grant AFOSR 86-0164)Rockwell International CorporationOKI SemiconductorU.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Charles Stark Draper LaboratoryDARPA/U.S. Navy - Office of Naval Research (Contract N00014-80-C-0622)DARPA/U.S. Navy - Office of Naval Research (Contract N00014-87-K-0825)National Science Foundation (Grant ECS-83-10941)AT&T Bell Laboratorie

    On chip control techniques for single chip CMOS video cameras

    Get PDF

    A jittered-sampling correction technique for ADCs

    Get PDF
    In Analogue to Digital Converters (ADCs) jittered sampling raises the noise floor; this leads to a decrease in its Signal to Noise ratio (SNR) and its effective number of bits (ENOB). This research studies a technique that compensate for the effects of sampling with a jittered clock. A thorough understanding of sampling in various data converters is complied

    Enhancing microprocessor power efficiency through clock-data compensation

    Get PDF
    The Smartphone revolution and the Internet of Things (IoTs) have triggered rapid advances in complex system-on-chips (SoCs) that increasing provide more functionality within a tight power budget. Highly power efficient on die switched-capacitor voltage regulators suffer from large output voltage ripple preventing their widespread use in modern integrated circuits. With technology scaling and increasing architectural complexity, the number of transistors switching in a power domain is growing rapidly leading to major issues with respect to voltage noise. The large voltage and frequency guard-bands present in current microprocessor designs to combat voltage noise both degrade the performance and erode the energy efficiency of the design. In an effort to reduce guard-bands, adaptive clocking based systems combat the problem of voltage noise by adjusting the clock frequency during a voltage droop to avoid timing failure. This thesis presents an integrated power management and clocking scheme that utilizes clock-data compensation to achieve adaptive clocking. The design is capable of automatically con figuring the supply voltage given a target clock frequency for the load circuit. Furthermore, during a voltage droop the design adjusts clock frequency to meet critical path timing margins while simultaneously increasing the current delivered to the load to recover from the droop. The design was implemented in IBM's 130nm technology and simulation results show that the design is able to clock the load circuit from 30 MHz to 800 Mhz with current efficiencies as high as 97%.M.S

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing
    corecore