208 research outputs found

    Dynamic Cellular Actuator Arrays and Expanded Fingerprint Method for Dynamic Modeling

    Get PDF
    Copyright © ElsevierDOI: http://dx.doi.org/10.1016/j.robot.2013.06.013A key step to understanding and producing natural motion is creating a physical, well understood actuator with a dynamic model resembling biological muscle. This actuator can then serve as the basis for building viable, full-strength, and safe muscles for disabled patients, rehabilitation, human force amplification, telerobotics, and humanoid robotic systems. This paper presents a cell-based flexible actuator modeling methodology and the General Fingerprint Method for systematically and efficiently calculating the actuators’ respective dynamic equations of motion. The cellular actuator arrays combine many flexible ‘cells’ in complex and varied topologies for combined large-scale motion. The cells can have varied internal dynamic models and common actuators such as piezoelectric, SMA, linear motor, and pneumatic technologies can fit the model by adding a flexible element in series with the actuator. The topology of the cellular actuator array lends it many of its properties allowing the final muscle to be catered to particular applications. The General Fingerprint Method allows for fast recalculation for different and/or changing structures and internal dynamics, and provides an intuitive base for future controls work. This paper also presents two physical SMA based cellular actuator arrays which validate the presented theory and give a basis for future development

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System
    • …
    corecore