1,983 research outputs found

    Soccer on Your Tabletop

    Full text link
    We present a system that transforms a monocular video of a soccer game into a moving 3D reconstruction, in which the players and field can be rendered interactively with a 3D viewer or through an Augmented Reality device. At the heart of our paper is an approach to estimate the depth map of each player, using a CNN that is trained on 3D player data extracted from soccer video games. We compare with state of the art body pose and depth estimation techniques, and show results on both synthetic ground truth benchmarks, and real YouTube soccer footage.Comment: CVPR'18. Project: http://grail.cs.washington.edu/projects/soccer

    Virtual camera synthesis for soccer game replays

    Get PDF
    International audienceIn this paper, we present a set of tools developed during the creation of a platform that allows the automatic generation of virtual views in a live soccer game production. Observing the scene through a multi-camera system, a 3D approximation of the players is computed and used for the synthesis of virtual views. The system is suitable both for static scenes, to create bullet time effects, and for video applications, where the virtual camera moves as the game plays

    3D-TV Production from Conventional Cameras for Sports Broadcast

    Get PDF
    3DTV production of live sports events presents a challenging problem involving conflicting requirements of main- taining broadcast stereo picture quality with practical problems in developing robust systems for cost effective deployment. In this paper we propose an alternative approach to stereo production in sports events using the conventional monocular broadcast cameras for 3D reconstruction of the event and subsequent stereo rendering. This approach has the potential advantage over stereo camera rigs of recovering full scene depth, allowing inter-ocular distance and convergence to be adapted according to the requirements of the target display and enabling stereo coverage from both existing and ‘virtual’ camera positions without additional cameras. A prototype system is presented with results of sports TV production trials for rendering of stereo and free-viewpoint video sequences of soccer and rugby

    Optimized Camera Handover Scheme in Free Viewpoint Video Streaming

    Get PDF
    Free-viewpoint video (FVV) is a promising approach that allows users to control their viewpoint and generate virtual views from any desired perspective. The individual user viewpoints are synthetized from two or more camera streams and correspondent depth sequences. In case of continuous viewpoint changes, the camera inputs of the view synthesis process must be changed in a seamless way, in order to avoid the starvation of the viewpoint synthesizer algorithm. Starvation occurs when the desired user viewpoint cannot be synthetized with the currently streamed camera views, thus the FVV playout interrupts. In this paper we proposed three camera handover schemes (TCC, MA, SA) based on viewpoint prediction in order to minimize the probability of playout stalls and find the tradeoff between the image quality and the camera handover frequency. Our simulation results show that the introduced camera switching methods can reduce the handover frequency with more than 40%, hence the viewpoint synthesis starvation and the playout interruption can be minimized. By providing seamless viewpoint changes, the quality of experience can be significantly improved, making the new FVV service more attractive in the future

    FVV Live: A real-time free-viewpoint video system with consumer electronics hardware

    Full text link
    FVV Live is a novel end-to-end free-viewpoint video system, designed for low cost and real-time operation, based on off-the-shelf components. The system has been designed to yield high-quality free-viewpoint video using consumer-grade cameras and hardware, which enables low deployment costs and easy installation for immersive event-broadcasting or videoconferencing. The paper describes the architecture of the system, including acquisition and encoding of multiview plus depth data in several capture servers and virtual view synthesis on an edge server. All the blocks of the system have been designed to overcome the limitations imposed by hardware and network, which impact directly on the accuracy of depth data and thus on the quality of virtual view synthesis. The design of FVV Live allows for an arbitrary number of cameras and capture servers, and the results presented in this paper correspond to an implementation with nine stereo-based depth cameras. FVV Live presents low motion-to-photon and end-to-end delays, which enables seamless free-viewpoint navigation and bilateral immersive communications. Moreover, the visual quality of FVV Live has been assessed through subjective assessment with satisfactory results, and additional comparative tests show that it is preferred over state-of-the-art DIBR alternatives

    Real-time camera motion tracking in planar view scenarios

    Get PDF
    We propose a novel method for real-time camera motion tracking in planar view scenarios. This method relies on the geometry of a tripod, an initial estimation of camera pose for the first video frame and a primitive tracking procedure. This process uses lines and circles as primitives, which are extracted applying classification and regression tree. We have applied the proposed method to high-definition videos of soccer matches. Experimental results prove that our proposal can be applied to processing high-definition video in real time. We validate the procedure by inserting virtual content in the video sequence
    corecore