34,688 research outputs found

    Revision and Conditional Inference for Abstract Dialectical Frameworks

    Get PDF
    For propositional beliefs, there are well-established connections between belief revision, defeasible conditionals and nonmonotonic inference. In argumentative contexts, such connections have not yet been investigated. On the one hand, the exact relationship between formal argumentation and nonmonotonic inference relations is a research topic that keeps on eluding researchers despite recently intensified efforts, whereas argumentative revision has been studied in numerous works during recent years. In this paper, we show that similar relationships between belief revision, defeasible conditionals and nonmonotonic inference hold in argumentative contexts as well. We first define revision operators for abstract dialectical frameworks, and use such revision operators to define dynamic conditionals by means of the Ramsey test. We show that such conditionals can be equivalently defined using a total preorder over three-valued interpretations, and study the inferential behaviour of the resulting conditional inference relations

    Dynamic Tableaux for Dynamic Modal Logics

    Get PDF
    In this dissertation we present proof systems for several modal logics. These proof systems are based on analytic (or semantic) tableaux. Modal logics are logics for reasoning about possibility, knowledge, beliefs, preferences, and other modalities. Their semantics are almost always based on Saul Kripke’s possible world semantics. In Kripke semantics, models are represented by relational structures or, equivalently, labeled graphs. Syntactic formulas that express statements about knowledge and other modalities are evaluated in terms of such models. This dissertation focuses on modal logics with dynamic operators for public announcements, belief revision, preference upgrades, and so on. These operators are defined in terms of mathematical operations on Kripke models. Thus, for example, a belief revision operator in the syntax would correspond to a belief revision operation on models. The ‘dynamic’ semantics of dynamic modal logics are a clever way of extending languages without compromising on intuitiveness. We present ‘dynamic’ tableau proof systems for these dynamic semantics, with the express aim to make them conceptually simple, easy to use, modular, and extensible. This we do by reflecting the semantics as closely as possible in the components of our tableau system. For instance, dynamic operations on Kripke models have counterpart dynamic relations between tableaux. Soundness, completeness, and decidability are three of the most important properties that a proof system may have. A proof system is sound if and only if any formula for which a proof exists, is true in every model. A proof system is complete if and only if for any formula that is true in all models, a proof exists. A proof system is decidable if and only if any formula can be proved to be a theorem or not a theorem in a finite number of steps. All proof systems in this dissertation are sound, complete, and decidable. Part of our strategy to create modular tableau systems is to delay concerns over decidability until after soundness and completeness have been established. Decidability is attained through the operations of folding and through operations on ‘tableau cascades’, which are graphs of tableaux. Finally, we provide a proof-of-concept implementation of our dynamic tableau system for public announcement logic in the Clojure programming language

    Belief Revision in Expressive Knowledge Representation Formalisms

    Get PDF
    We live in an era of data and information, where an immeasurable amount of discoveries, findings, events, news, and transactions are generated every second. Governments, companies, or individuals have to employ and process all that data for knowledge-based decision-making (i.e. a decision-making process that uses predetermined criteria to measure and ensure the optimal outcome for a specific topic), which then prompt them to view the knowledge as valuable resource. In this knowledge-based view, the capability to create and utilize knowledge is the key source of an organization or individual’s competitive advantage. This dynamic nature of knowledge leads us to the study of belief revision (or belief change), an area which emerged from work in philosophy and then impacted further developments in computer science and artificial intelligence. In belief revision area, the AGM postulates by AlchourrĂłn, GĂ€rdenfors, and Makinson continue to represent a cornerstone in research related to belief change. Katsuno and Mendelzon (K&M) adopted the AGM postulates for changing belief bases and characterized AGM belief base revision in propositional logic over finite signatures. In this thesis, two research directions are considered. In the first, by considering the semantic point of view, we generalize K&M’s approach to the setting of (multiple) base revision in arbitrary Tarskian logics, covering all logics with a classical model-theoretic semantics and hence a wide variety of logics used in knowledge representation and beyond. Our generic formulation applies to various notions of “base”, such as belief sets, arbitrary or finite sets of sentences, or single sentences. The core result is a representation theorem showing a two-way correspondence between AGM base revision operators and certain “assignments”: functions mapping belief bases to total — yet not transitive — “preference” relations between interpretations. Alongside, we present a companion result for the case when the AGM postulate of syntax-independence is abandoned. We also provide a characterization of all logics for which our result can be strengthened to assignments producing transitive preference relations (as in K&M’s original work), giving rise to two more representation theorems for such logics, according to syntax dependence vs. independence. The second research direction in this thesis explores two approaches for revising description logic knowledge bases under fixed-domain semantics, namely model-based approach and individual-based approach. In this logical setting, models of the knowledge bases can be enumerated and can be computed to produce the revision result, semantically. We show a characterization of the AGM revision operator for this logic and present a concrete model-based revision approach via distance between interpretations. In addition, by weakening the KB based on certain domain elements, a novel individual-based revision operator is provided as an alternative approach

    Extending Dynamic Doxastic Logic: Accommodating Iterated Beliefs And Ramsey Conditionals Within DDL

    Get PDF
    In this paper we distinguish between various kinds of doxastic theories. One distinction is between informal and formal doxastic theories. AGM-type theories of belief change are of the former kind, while Hintikka’s logic of knowledge and belief is of the latter. Then we distinguish between static theories that study the unchanging beliefs of a certain agent and dynamic theories that investigate not only the constraints that can reasonably be imposed on the doxastic states of a rational agent but also rationality constraints on the changes of doxastic state that may occur in such agents. An additional distinction is that between non-introspective theories and introspective ones. Non-introspective theories investigate agents that have opinions about the external world but no higher-order opinions about their own doxasticnstates. Standard AGM-type theories as well as the currently existing versions of Segerberg’s dynamic doxastic logic (DDL) are non-introspective. Hintikka-style doxastic logic is of course introspective but it is a static theory. Thus, the challenge remains to devise doxastic theories that are both dynamic and introspective. We outline the semantics for truly introspective dynamic doxastic logic, i.e., a dynamic doxastic logic that allows us to describe agents who have both the ability to form higher-order beliefs and to reflect upon and change their minds about their own (higher-order) beliefs. This extension of DDL demands that we give up the Preservation condition on revision. We make some suggestions as to how such a non-preservative revision operation can be constructed. We also consider extending DDL with conditionals satisfying the Ramsey test and show that GĂ€rdenfors’ well-known impossibility result applies to such a framework. Also in this case, Preservation has to be given up

    Relation-changing modal operators

    Get PDF
    We study dynamic modal operators that can change the accessibility relation of a model during the evaluation of a formula. In particular, we extend the basic modal language with modalities that are able to delete, add or swap an edge between pairs of elements of the domain. We define a generic framework to characterize this kind of operations. First, we investigate relation-changing modal logics as fragments of classical logics. Then, we use the new framework to get a suitable notion of bisimulation for the logics introduced, and we investigate their expressive power. Finally, we show that the complexity of the model checking problem for the particular operators introduced is PSpace-complete, and we study two subproblems of model checking: formula complexity and program complexity.Fil: Areces, Carlos Eduardo. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂ­a y FĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Fervari, Raul Alberto. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂ­a y FĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Hoffmann, Guillaume Emmanuel. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂ­a y FĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin
    • 

    corecore