9 research outputs found

    An Efficient Method for Realizing Contractions of Access Structures in Cloud Storage

    Full text link
    In single-cloud storage, ciphertext-policy attribute-based encryption (CP-ABE) allows one to encrypt any data under an access structure to a cloud server, specifying what attributes are required to decrypt. In multi-cloud storage, a secret sharing scheme (SSS) allows one to split any data into multiple shares, one to a single server, and specify which subset of the servers are able to recover the data. It is an interesting problem to remove some attributes/servers but still enable the remaining attributes/servers in every authorized set to recover the data. The problem is related to the contraction problem of access structures for SSSs. In this paper, we propose a method that can efficiently transform a given SSS for an access structure to SSSs for contractions of the access structure. We show its applications in solving the attribute removal problem in the CP-ABE based single-cloud storage and the data relocating problem in multi-cloud storage. Our method results in solutions that require either less server storage or even no additional server storage.Comment: IEEE Transactions on Services Computin

    Theory and Practice of Cryptography and Network Security Protocols and Technologies

    Get PDF
    In an age of explosive worldwide growth of electronic data storage and communications, effective protection of information has become a critical requirement. When used in coordination with other tools for ensuring information security, cryptography in all of its applications, including data confidentiality, data integrity, and user authentication, is a most powerful tool for protecting information. This book presents a collection of research work in the field of cryptography. It discusses some of the critical challenges that are being faced by the current computing world and also describes some mechanisms to defend against these challenges. It is a valuable source of knowledge for researchers, engineers, graduate and doctoral students working in the field of cryptography. It will also be useful for faculty members of graduate schools and universities

    Decentralized Riemannian Particle Filtering with Applications to Multi-Agent Localization

    Get PDF
    The primary focus of this research is to develop consistent nonlinear decentralized particle filtering approaches to the problem of multiple agent localization. A key aspect in our development is the use of Riemannian geometry to exploit the inherently non-Euclidean characteristics that are typical when considering multiple agent localization scenarios. A decentralized formulation is considered due to the practical advantages it provides over centralized fusion architectures. Inspiration is taken from the relatively new field of information geometry and the more established research field of computer vision. Differential geometric tools such as manifolds, geodesics, tangent spaces, exponential, and logarithmic mappings are used extensively to describe probabilistic quantities. Numerous probabilistic parameterizations were identified, settling on the efficient square-root probability density function parameterization. The square-root parameterization has the benefit of allowing filter calculations to be carried out on the well studied Riemannian unit hypersphere. A key advantage for selecting the unit hypersphere is that it permits closed-form calculations, a characteristic that is not shared by current solution approaches. Through the use of the Riemannian geometry of the unit hypersphere, we are able to demonstrate the ability to produce estimates that are not overly optimistic. Results are presented that clearly show the ability of the proposed approaches to outperform current state-of-the-art decentralized particle filtering methods. In particular, results are presented that emphasize the achievable improvement in estimation error, estimator consistency, and required computational burden

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore