10,529 research outputs found

    Community Detection on Evolving Graphs

    Get PDF
    Clustering is a fundamental step in many information-retrieval and data-mining applications. Detecting clusters in graphs is also a key tool for finding the community structure in social and behavioral networks. In many of these applications, the input graph evolves over time in a continual and decentralized manner, and, to maintain a good clustering, the clustering algorithm needs to repeatedly probe the graph. Furthermore, there are often limitations on the frequency of such probes, either imposed explicitly by the online platform (e.g., in the case of crawling proprietary social networks like twitter) or implicitly because of resource limitations (e.g., in the case of crawling the web). In this paper, we study a model of clustering on evolving graphs that captures this aspect of the problem. Our model is based on the classical stochastic block model, which has been used to assess rigorously the quality of various static clustering methods. In our model, the algorithm is supposed to reconstruct the planted clustering, given the ability to query for small pieces of local information about the graph, at a limited rate. We design and analyze clustering algorithms that work in this model, and show asymptotically tight upper and lower bounds on their accuracy. Finally, we perform simulations, which demonstrate that our main asymptotic results hold true also in practice

    Mapping the Curricular Structure and Contents of Network Science Courses

    Full text link
    As network science has matured as an established field of research, there are already a number of courses on this topic developed and offered at various higher education institutions, often at postgraduate levels. In those courses, instructors adopted different approaches with different focus areas and curricular designs. We collected information about 30 existing network science courses from various online sources, and analyzed the contents of their syllabi or course schedules. The topics and their curricular sequences were extracted from the course syllabi/schedules and represented as a directed weighted graph, which we call the topic network. Community detection in the topic network revealed seven topic clusters, which matched reasonably with the concept list previously generated by students and educators through the Network Literacy initiative. The minimum spanning tree of the topic network revealed typical flows of curricular contents, starting with examples of networks, moving onto random networks and small-world networks, then branching off to various subtopics from there. These results illustrate the current state of consensus formation (including variations and disagreements) among the network science community on what should be taught about networks and how, which may also be informative for K--12 education and informal education.Comment: 17 pages, 11 figures, 2 tables; to appear in Cramer, C. et al. (eds.), Network Science in Education -- Tools and Techniques for Transforming Teaching and Learning (Springer, 2017, in press

    Disentangling scale approaches in governance research: comparing monocentric, multilevel, and adaptive governance

    Get PDF
    The question of how to govern the multiscale problems in today’s network society is an important topic in the fields of public administration, political sciences, and environmental sciences. How scales are defined, studied, and dealt with varies substantially within and across these fields. This paper aims to reduce the existing conceptual confusion regarding scales by disentangling three representative approaches that address both governance and scaling: monocentric governance, multilevel governance, and adaptive governance. It does so by analyzing the differences in (1) underlying views on governing, (2) assumptions about scales, (3) dominant problem definitions regarding scales, and (4) preferred responses for dealing with multiple scales. Finally, this paper identifies research opportunities within and across these approaches
    • …
    corecore