45 research outputs found

    Security Management Framework for the Internet of Things

    Get PDF
    The increase in the design and development of wireless communication technologies offers multiple opportunities for the management and control of cyber-physical systems with connections between smart and autonomous devices, which provide the delivery of simplified data through the use of cloud computing. Given this relationship with the Internet of Things (IoT), it established the concept of pervasive computing that allows any object to communicate with services, sensors, people, and objects without human intervention. However, the rapid growth of connectivity with smart applications through autonomous systems connected to the internet has allowed the exposure of numerous vulnerabilities in IoT systems by malicious users. This dissertation developed a novel ontology-based cybersecurity framework to improve security in IoT systems using an ontological analysis to adapt appropriate security services addressed to threats. The composition of this proposal explores two approaches: (1) design time, which offers a dynamic method to build security services through the application of a methodology directed to models considering existing business processes; and (2) execution time, which involves monitoring the IoT environment, classifying vulnerabilities and threats, and acting in the environment, ensuring the correct adaptation of existing services. The validation approach was used to demonstrate the feasibility of implementing the proposed cybersecurity framework. It implies the evaluation of the ontology to offer a qualitative evaluation based on the analysis of several criteria and also a proof of concept implemented and tested using specific industrial scenarios. This dissertation has been verified by adopting a methodology that follows the acceptance in the research community through technical validation in the application of the concept in an industrial setting.O aumento no projeto e desenvolvimento de tecnologias de comunicação sem fio oferece múltiplas oportunidades para a gestão e controle de sistemas ciber-físicos com conexões entre dispositivos inteligentes e autônomos, os quais proporcionam a entrega de dados simplificados através do uso da computação em nuvem. Diante dessa relação com a Internet das Coisas (IoT) estabeleceu-se o conceito de computação pervasiva que permite que qualquer objeto possa comunicar com os serviços, sensores, pessoas e objetos sem intervenção humana. Entretanto, o rápido crescimento da conectividade com as aplicações inteligentes através de sistemas autônomos conectados com a internet permitiu a exposição de inúmeras vulnerabilidades dos sistemas IoT para usuários maliciosos. Esta dissertação desenvolveu um novo framework de cibersegurança baseada em ontologia para melhorar a segurança em sistemas IoT usando uma análise ontológica para a adaptação de serviços de segurança apropriados endereçados para as ameaças. A composição dessa proposta explora duas abordagens: (1) tempo de projeto, o qual oferece um método dinâmico para construir serviços de segurança através da aplicação de uma metodologia dirigida a modelos, considerando processos empresariais existentes; e (2) tempo de execução, o qual envolve o monitoramento do ambiente IoT, a classificação de vulnerabilidades e ameaças, e a atuação no ambiente garantindo a correta adaptação dos serviços existentes. Duas abordagens de validação foram utilizadas para demonstrar a viabilidade da implementação do framework de cibersegurança proposto. Isto implica na avaliação da ontologia para oferecer uma avaliação qualitativa baseada na análise de diversos critérios e também uma prova de conceito implementada e testada usando cenários específicos. Esta dissertação foi validada adotando uma metodologia que segue a validação na comunidade científica através da validação técnica na aplicação do nosso conceito em um cenário industrial

    The enterprise blockchain design framework and its application to an e-Procurement ecosystem

    Get PDF
    The research work of this paper has been partially funded by the project VORTAL INTER DATA (n° 038361), co-financed by Vortal and COMPETE Program P2020. We would also like to thank UNIDEMI, DEMI, and LASI for providing us with the research infrastucture and resources to conduct this research. Publisher Copyright: © 2022 Elsevier LtdBlockchain technologies have seen a steady growth in interest from industries as the technology is gaining maturity. It is offering a novel way to establish trust amongst multiple stakeholders without relying or trusting centralised authorities. While its use as a decentralised store of value has been validated through the emergence of cryptocurrencies, its use case in industrial applications with multiple stakeholder ecosystems such as industrial supply chain management, is still at an early stage of design and experimentation where private blockchains are used as opposed to public blockchains. Many enterprise blockchain projects failed to gain traction after initial launches, due to inefficient design, lack of incentives to all stakeholders or simply because the use of blockchain was not really necessary in the first place. There has been a need for a framework that allows blockchain designers and researchers to evaluate scenarios when a blockchain solution is useful and design the key configurations for an enterprise blockchain solution. Literature on blockchain architectures are sparse and only applicable to specific use cases or functionalities. This paper proposes a comprehensive Enterprise Blockchain Design Framework (EBDF), that not only identifies the relevant use cases when a blockchain must be utilised, but also details all the characteristics and configurations for designing an enterprise blockchain ecosystem, applicable to multiple industries. To validate the EBDF, we apply the same to the Vortal e-Procurement ecosystem allowing for multiple platforms to interoperate with greater transparency and accountability over the proposed blockchain framework. In this use case, many vendors bid for procurement procedures, often for publicly managed funds where it is extremely vital that full transparency and accountability is ensured in the entire process. Ensuring that certain digital certification functions, such as timestamps are independent from e-Procurement platform owners has been a challenge. Blockchain technology has emerged as a promising solution for not only ensuring transparency and immutability of records, but also providing for interoperability across different platforms by acting as a trusted third-party. The applied framework is used to design a Hyperledger based blockchain solution with some of the key architectural elements that could fulfil these needs while presenting the advantages of such a solution.publishersversionpublishe
    corecore