9,977 research outputs found

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Forecasting high waters at Venice Lagoon using chaotic time series analisys and nonlinear neural netwoks

    Get PDF
    Time series analysis using nonlinear dynamics systems theory and multilayer neural networks models have been applied to the time sequence of water level data recorded every hour at 'Punta della Salute' from Venice Lagoon during the years 1980-1994. The first method is based on the reconstruction of the state space attractor using time delay embedding vectors and on the characterisation of invariant properties which define its dynamics. The results suggest the existence of a low dimensional chaotic attractor with a Lyapunov dimension, DL, of around 6.6 and a predictability between 8 and 13 hours ahead. Furthermore, once the attractor has been reconstructed it is possible to make predictions by mapping local-neighbourhood to local-neighbourhood in the reconstructed phase space. To compare the prediction results with another nonlinear method, two nonlinear autoregressive models (NAR) based on multilayer feedforward neural networks have been developed. From the study, it can be observed that nonlinear forecasting produces adequate results for the 'normal' dynamic behaviour of the water level of Venice Lagoon, outperforming linear algorithms, however, both methods fail to forecast the 'high water' phenomenon more than 2-3 hours ahead.Publicad

    Mathematical problems for complex networks

    Get PDF
    Copyright @ 2012 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This article is made available through the Brunel Open Access Publishing Fund.Complex networks do exist in our lives. The brain is a neural network. The global economy is a network of national economies. Computer viruses routinely spread through the Internet. Food-webs, ecosystems, and metabolic pathways can be represented by networks. Energy is distributed through transportation networks in living organisms, man-made infrastructures, and other physical systems. Dynamic behaviors of complex networks, such as stability, periodic oscillation, bifurcation, or even chaos, are ubiquitous in the real world and often reconfigurable. Networks have been studied in the context of dynamical systems in a range of disciplines. However, until recently there has been relatively little work that treats dynamics as a function of network structure, where the states of both the nodes and the edges can change, and the topology of the network itself often evolves in time. Some major problems have not been fully investigated, such as the behavior of stability, synchronization and chaos control for complex networks, as well as their applications in, for example, communication and bioinformatics

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed
    • …
    corecore