423 research outputs found

    Surgical Instruments based on flexible micro-electronics

    Get PDF
    This dissertation explores strategies to create micro-scale tools with integrated electronic and mechanical functionalities. Recently developed approaches to control the shape of flexible micro-structures are employed to fabricate micro-electronic instruments that embed components for sensing and actuation, aiming to expand the toolkit of minimally invasive surgery. This thesis proposes two distinct types of devices that might expand the boundaries of modern surgical interventions and enable new bio-medical applications. First, an electronically integrated micro-catheter is developed. Electronic components for sensing and actuation are embedded into the catheter wall through an alternative fabrication paradigm that takes advantage of a self-rolling polymeric thin-film system. With a diameter of only 0.1 mm, the catheter is capable of delivering fluids in a highly targeted fashion, comprises actuated opposing digits for the efficient manipulation of microscopic objects, and a magnetic sensor for navigation. Employing a specially conceived approach for position tracking, navigation with a high resolution below 0.1 mm is achieved. The fundamental functionalities and mechanical properties of this instrument are evaluated in artificial model environments and ex vivo tissues. The second development explores reshapeable micro-electronic devices. These systems integrate conductive polymer actuators and strain or magnetic sensors to adjust their shape through feedback-driven closed loop control and mechanically interact with their environment. Due to their inherent flexibility and integrated sensory capabilities, these devices are well suited to interface with and manipulate sensitive biological tissues, as demonstrated with an ex vivo nerve bundle, and may facilitate new interventions in neural surgery.:List of Abbreviations 1 Introduction 1.1 Motivation 1.2 Objectives and structure of this dissertation 2 Background 2.1 Tools for minimally invasive surgery 2.1.1 Catheters 2.1.2 Tools for robotic micro-surgery 2.1.3 Flexible electronics for smart surgical tools 2.2 Platforms for shapeable electronics 2.2.1 Shapeable polymer composites 2.2.2 Shapeable electronics 2.2.3 Soft actuators and manipulators 2.3 Sensors for position and shape feedback 2.3.1 Magnetic sensors for position and orientation measurements 2.3.2 Strain gauge sensors 3 Materials and Methods 3.1 Materials for shapeable electronics 3.1.1 Metal-organic sacrificial layer 3.1.2 Polyimide as reinforcing material 3.1.3 Swelling hydrogel for self assembly 3.1.4 Polypyrrole for flexible micro actuators 3.2 Device fabrication techniques 3.2.1 Photolithography 3.2.2 Electron beam deposition 3.2.3 Sputter deposition 3.2.4 Atomic layer deposition 3.2.5 Electro-polymerization of polypyrrole 3.3 Device characterization techniques 3.3.1 Kerr magnetometry 3.3.2 Electro-magnetic characterization of sensors 3.3.3 Electro-chemical analysis of polypyrrole 3.3.4 Preparation of model environments and materials 3.4 Sensor signal evaluation and processing 3.4.1 Signal processing 3.4.2 Cross correlation for phase analysis 3.4.3 PID feedback control 4 Electronically Integrated Self Assembled Micro Catheters 4.1 Design and Fabrication 4.1.1 Fabrication and self assembly 4.1.2 Features and design considerations 4.1.3 Electronic and fluidic connections 4.2 Integrated features and functionalities 4.2.1 Fluidic transport 4.2.2 Bending stability 4.2.3 Actuated micro manipulator 4.3 Magnetic position tracking 4.3.1 Integrated magnetic sensor 4.3.2 Position control with sensor feedback 4.3.3 Introduction of magnetic phase encoded tracking 4.3.4 Experimental realization 4.3.5 Simultaneous magnetic and ultrasound tracking 4.3.6 Discussion, limitations, and perspectives 5 Reshapeable Micro Electronic Devices 5.1 Design and fabrication 5.1.1 Estimation of optimal fabrication parameters 5.1.2 Device Fabrication 5.1.3 Control electronics and software 5.2 Performance of Actuators 5.2.1 Blocking force, speed, and durability 5.2.2 Curvature 5.3 Orientation control with magnetic sensors 5.3.1 Magnetic sensors on actuated device 5.3.2 Reference magnetic field 5.3.3 Feedback control 5.4 Shape control with integrated strain sensors 5.4.1 Strain gauge curvature sensors 5.4.2 Feedback control 5.4.3 Obstacle detection 5.5 Heterogenous integration with active electronics 5.5.1 Fabrication and properties of active matrices 5.5.2 Fabrication and operation of PPy actuators 5.5.3 Site selective actuation 6 Discussion and Outlook 6.1 Integrated self assembled catheters 6.1.1 Outlook 6.2 Reshapeable micro electronic devices 6.2.1 Outlook 7 Conclusion Appendix A1 Processing parameters for polymer stack layers A2 Derivation of magnetic phase profile in 3D Bibliography List of Figures and Tables Acknowledgements Theses List of Publication

    Robotics Technology Crosscutting Program. Technology summary

    Full text link

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Center for Space Microelectronics Technology

    Get PDF
    The 1991 Technical Report of the Jet Propulsion Laboratory Center for Space Microelectronics Technology summarizes the technical accomplishments, publications, presentations, and patents of the Center during the past year. The report lists 193 publications, 211 presentations, and 125 new technology reports and patents

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1219 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1990 and December 31, 1990. The purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Radioactive Tank Waste Remediation Focus Area. Technology summary

    Full text link

    Research and technology

    Get PDF
    As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics
    • …
    corecore