389 research outputs found

    Mobile WiMAX: multi-cell network evaluation and capacity optimization

    Get PDF

    Energy-Aware Competitive Power Allocation for Heterogeneous Networks Under QoS Constraints

    Get PDF
    This work proposes a distributed power allocation scheme for maximizing energy efficiency in the uplink of orthogonal frequency-division multiple access (OFDMA)-based heterogeneous networks (HetNets). The user equipment (UEs) in the network are modeled as rational agents that engage in a non-cooperative game where each UE allocates its available transmit power over the set of assigned subcarriers so as to maximize its individual utility (defined as the user's throughput per Watt of transmit power) subject to minimum-rate constraints. In this framework, the relevant solution concept is that of Debreu equilibrium, a generalization of Nash equilibrium which accounts for the case where an agent's set of possible actions depends on the actions of its opponents. Since the problem at hand might not be feasible, Debreu equilibria do not always exist. However, using techniques from fractional programming, we provide a characterization of equilibrial power allocation profiles when they do exist. In particular, Debreu equilibria are found to be the fixed points of a water-filling best response operator whose water level is a function of minimum rate constraints and circuit power. Moreover, we also describe a set of sufficient conditions for the existence and uniqueness of Debreu equilibria exploiting the contraction properties of the best response operator. This analysis provides the necessary tools to derive a power allocation scheme that steers the network to equilibrium in an iterative and distributed manner without the need for any centralized processing. Numerical simulations are then used to validate the analysis and assess the performance of the proposed algorithm as a function of the system parameters.Comment: 37 pages, 12 figures, to appear IEEE Trans. Wireless Commu

    Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission

    Full text link
    The throughput of multicell systems is inherently limited by interference and the available communication resources. Coordinated resource allocation is the key to efficient performance, but the demand on backhaul signaling and computational resources grows rapidly with number of cells, terminals, and subcarriers. To handle this, we propose a novel multicell framework with dynamic cooperation clusters where each terminal is jointly served by a small set of base stations. Each base station coordinates interference to neighboring terminals only, thus limiting backhaul signalling and making the framework scalable. This framework can describe anything from interference channels to ideal joint multicell transmission. The resource allocation (i.e., precoding and scheduling) is formulated as an optimization problem (P1) with performance described by arbitrary monotonic functions of the signal-to-interference-and-noise ratios (SINRs) and arbitrary linear power constraints. Although (P1) is non-convex and difficult to solve optimally, we are able to prove: 1) Optimality of single-stream beamforming; 2) Conditions for full power usage; and 3) A precoding parametrization based on a few parameters between zero and one. These optimality properties are used to propose low-complexity strategies: both a centralized scheme and a distributed version that only requires local channel knowledge and processing. We evaluate the performance on measured multicell channels and observe that the proposed strategies achieve close-to-optimal performance among centralized and distributed solutions, respectively. In addition, we show that multicell interference coordination can give substantial improvements in sum performance, but that joint transmission is very sensitive to synchronization errors and that some terminals can experience performance degradations.Comment: Published in IEEE Transactions on Signal Processing, 15 pages, 7 figures. This version corrects typos related to Eq. (4) and Eq. (28
    • …
    corecore