13 research outputs found

    Design, Modeling, and Analysis for MAC Protocols in Ultra-wideband Networks

    Get PDF
    Ultra-wideband (UWB) is an appealing transmission technology for short-range, bandwidth demanded wireless communications. With the data rate of several hundred megabits per second, UWB demonstrates great potential in supporting multimedia streams such as high-definition television (HDTV), voice over Internet Protocol (VoIP), and console gaming in office or home networks, known as the wireless personal area network (WPAN). While vast research effort has been made on the physical layer issues of UWB, the corresponding medium access control (MAC) protocols that exploit UWB technology have not been well developed. Given an extremely wide bandwidth of UWB, a fundamental problem on how to manage multiple users to efficiently utilize the bandwidth is a MAC design issue. Without explicitly considering the physical properties of UWB, existing MAC protocols are not optimized for UWB-based networks. In addition, the limited processing capability of UWB devices poses challenges to the design of low-complexity MAC protocols. In this thesis, we comprehensively investigate the MAC protocols for UWB networks. The objective is to link the physical characteristics of UWB with the MAC protocols to fully exploit its advantage. We consider two themes: centralized and distributed UWB networks. For centralized networks, the most critical issue surrounding the MAC protocol is the resource allocation with fairness and quality of service (QoS) provisioning. We address this issue by breaking down into two scenarios: homogeneous and heterogeneous network configurations. In the homogeneous case, users have the same bandwidth requirement, and the objective of resource allocation is to maximize the network throughput. In the heterogeneous case, users have different bandwidth requirements, and the objective of resource allocation is to provide differentiated services. For both design objectives, the optimal scheduling problem is NP-hard. Our contributions lie in the development of low-complexity scheduling algorithms that fully exploit the characteristics of UWB. For distributed networks, the MAC becomes node-based problems, rather than link-based problems as in centralized networks. Each node either contends for channel access or reserves transmission opportunity through negotiation. We investigate two representative protocols that have been adopted in the WiMedia specification for future UWB-based WPANs. One is a contention-based protocol called prioritized channel access (PCA), which employs the same mechanisms as the enhanced distributed channel access (EDCA) in IEEE 802.11e for providing differentiated services. The other is a reservation-based protocol called distributed reservation protocol (DRP), which allows time slots to be reserved in a distributed manner. Our goal is to identify the capabilities of these two protocols in supporting multimedia applications for UWB networks. To achieve this, we develop analytical models and conduct detailed analysis for respective protocols. The proposed analytical models have several merits. They are accurate and provide close-form expressions with low computational effort. Through a cross-layer approach, our analytical models can capture the near-realistic protocol behaviors, thus useful insights into the protocol can be obtained to improve or fine-tune the protocol operations. The proposed models can also be readily extended to incorporate more sophisticated considerations, which should benefit future UWB network design

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    An investigation into the viability of UWB as lower-layer for Bluetooth

    Get PDF
    This report presents an investigation into some merging options between an upper-layer Bluetooth (BT) protocol stack with a lower-layer ECMA-368/9 Ultra Wideband (UWB) radio connection. A Bluetooth over Ultra Wideband (BToUWB) system is implemented by channelling an existing compliant Bluetooth connection’s data over an Ultra Wideband Medium Access Control (MAC) and Physical (PHY) layer radio channel. The aim of this project is to provide a description of the methodology used to create a BToUWB link and evaluate some advantages pertaining to the merger between the two Wireless Personal Area Network (WPAN) technologies. Prior to channelling data over a UWB connection, a compliant Bluetooth and UWB connection were configured between two Linux enabled computers by use of Bluetooth and UWB enabled Universal Serial Bus (USB) dongles. BlueZ, the official Bluetooth stack for Linux, were used to implement a modified Bluetooth stack. By modifying the open source BlueZ files, the Host Controller Interface (HCI) commands sent to the HCI sublayer by upper layer Logical Link Control and Adaptation Protocol (L2CAP) and Synchronous Connection-Oriented (SCO) implementations were hijacked and routed to a UWB “router and convergence” implementation for transmission over the UWB subsytem. Similarly lower level HCI events were spoofed to the L2CAP and SCO layers by the UWB convergence implementation upon receiving packets from the UWB subsystem. The commercial availability of UWB hardware through Wireless USB dongles enabled the realization of a compliant UWB link between the systems, requiring special driver modifications and Intel provided firmware to establish a WiMedia Logical Link Control Protocol (WLP) network. A specially developed test program generates L2CAP, Radio Frequency Communication (RFCOMM) and SCO Bluetooth data for testing the BToUWB link. The various Bluetooth data packets are routed from the Bluetooth stack to a developed kernel space routing module, which encapsulated the packets and route them via the WLP interface over the wireless high-speed UWB network to the remote system. On the remote side, the packets propagate its way back up through the UWB hardware and software module, and to the router module via call-back functions in the WLP interface. The router module strips the headers and injects the packets back into the Bluetooth L2CAP, RFCOMM or SCO layer for further Bluetooth processing. A test program running on the remote system, receives the test data and loops it back for asynchronous analyses, or stores it for later comparison in synchronous analyses. The results obtained from the system analyses shows how a Bluetooth system can benefit from implementing UWB as lower layer wireless interface over a short range by either improved asynchronous bandwidth, or synchronous reliability. The results also show some limitations of the pilot UWB hardware and firmware available over longer distances. In general, the successful transmission of Bluetooth data over the BToUWB implemented system proves the HCI layer to be a viable mergence point between the two protocols.Dissertation (MEng)--University of Pretoria, 2009.Electrical, Electronic and Computer Engineeringunrestricte

    Wireless Network Communications Overview for Space Mission Operations

    Get PDF
    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information

    Cooperating broadcast and cellular conditional access system for digital television

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The lack of interoperability between Pay‐TV service providers and a horizontally integrated business transaction model have compromised the competition in the Pay‐TV market. In addition, the lack of interactivity with customers has resulted in high churn rate and improper security measures have contributed into considerable business loss. These issues are the main cause of high operational costs and subscription fees in the Pay‐TV systems. This paper presents a novel end‐to‐end system architecture for Pay‐TV systems cooperating mobile and broadcasting technologies. It provides a cost‐effective, scalable, dynamic and secure access control mechanism supporting converged services and new business opportunities in Pay‐TV systems. It enhances interactivity, security and potentially reduces customer attrition and operational cost. In this platform, service providers can effectively interact with their customers, personalise their services and adopt appropriate security measures. It breaks up the rigid relationship between a viewer and set‐top box as imposed by traditional conditional access systems, thus, a viewer can fully enjoy his entitlements via an arbitrary set‐top box. Having thoroughly considered state‐of‐the‐art technologies currently being used across the world, the thesis highlights novel use cases and presents the full design and implementation aspects of the system. The design section is enriched by providing possible security structures supported thereby. A business collaboration structure is proposed, followed by a reference model for implementing the system. Finally, the security architectures are analysed to propose the best architecture on the basis of security, complexity and set‐top box production cost criteria

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications
    corecore